Mostrar el registro sencillo del ítem

dc.contributor.author
Beltran, Carlos  
dc.contributor.author
Dedieu, Jean Pierre  
dc.contributor.author
Malajovich, Gregorio  
dc.contributor.author
Shub, Michael Ira  
dc.date.available
2019-01-23T21:59:29Z  
dc.date.issued
2010-03  
dc.identifier.citation
Beltran, Carlos; Dedieu, Jean Pierre; Malajovich, Gregorio; Shub, Michael Ira; Convexity properties of the condition number; Society for Industrial and Applied Mathematics; Siam Journal On Matrix Analysis And Applications; 31; 3; 3-2010; 1491-1506  
dc.identifier.issn
0895-4798  
dc.identifier.uri
http://hdl.handle.net/11336/68499  
dc.description.abstract
We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian inner product obtained by multiplying the usual Frobenius inner product by the inverse of the square of the smallest singular value of A denoted σ n(A). When this smallest singular value has multiplicity 1, the function A → log(σ n(A) -2) is a convex function with respect to the condition Riemannian structure that is t → log(σ n(A(t)) -2) is convex, in the usual sense for any geodesic A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said to be self-convex when log α(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient conditions for self-convexity are given when α is C 2. When α(x) = d(x,N) -2, where d(x,N) is the distance from x to a C 2 submanifold N ⊂R j, we prove that α is self-convex when restricted to the largest open set of points x where there is a unique closest point in N to x. We also show, using this more general notion, that the square of the condition number ∥A∥ F /σ n(A) is self-convex in projective space and the solution variety.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Society for Industrial and Applied Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Condition Number  
dc.subject
Geodesic  
dc.subject
Linear Group  
dc.subject
Log-Convexity  
dc.subject
Riemannian Geometry  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Convexity properties of the condition number  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-23T17:17:06Z  
dc.identifier.eissn
1095-7162  
dc.journal.volume
31  
dc.journal.number
3  
dc.journal.pagination
1491-1506  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Filadelfia  
dc.description.fil
Fil: Beltran, Carlos. Universidad de Cantabria; España  
dc.description.fil
Fil: Dedieu, Jean Pierre. Université Paul Sabatier; Francia  
dc.description.fil
Fil: Malajovich, Gregorio. Universidade Federal do Rio de Janeiro; Brasil  
dc.description.fil
Fil: Shub, Michael Ira. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. University of Toronto; Canadá  
dc.journal.title
Siam Journal On Matrix Analysis And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0806.0395  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1137/080718681  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/abs/10.1137/080718681