Artículo
Solutions of the divergence and Korn inequalities on domains with an external cusp
Fecha de publicación:
08/2010
Editorial:
Suomalainen Tiedeakatemia
Revista:
Annales Academiae Scientiarum Fennicae. Mathematica
ISSN:
1239-629X
e-ISSN:
1798-2383
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper deals with solutions of the divergence for domains with external cusps. It is known that the classic results in standard Sobolev spaces, which are basic in the variational analysis of the Stokes equations, are not valid for this class of domains. For some bounded domains Ω⊂Rn presenting power type cusps of integer dimension m≤n−2, we prove the existence of solutions of the equation divu=f in weighted Sobolev spaces, where the weights are powers of the distance to the cusp. The results obtained are optimal in the sense that the powers cannot be improved. As an application, we prove existence and uniqueness of solutions of the Stokes equations in appropriate spaces for cuspidal domains. Also, we obtain weighted Korn type inequalities for this class of domains.
Palabras clave:
Divergence Operator
,
Weighted Sobolev Spaces
,
Korn Inequality
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Duran, Ricardo Guillermo; Lopez Garcia, Fernando Alfonso; Solutions of the divergence and Korn inequalities on domains with an external cusp; Suomalainen Tiedeakatemia; Annales Academiae Scientiarum Fennicae. Mathematica; 35; 8-2010; 421-438
Compartir
Altmétricas