Artículo
On the convergence of random polynomials and multilinear forms
Fecha de publicación:
10/2011
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider different kinds of convergence of homogeneous polynomials and multilinear forms in random variables. We show that for a variety of complex random variables, the almost sure convergence of the polynomial is equivalent to that of the multilinear form, and to the square summability of the coefficients. Also, we present polynomial Khintchine inequalities for complex gaussian and Steinhaus variables. All these results have no analogues in the real case. Moreover, we study the Lp-convergence of random polynomials and derive certain decoupling inequalities without the usual tetrahedral hypothesis. We also consider convergence on "full subspaces" in the sense of Sjögren, both for real and complex random variables, and relate it to domination properties of the polynomial or the multilinear form, establishing a link with the theory of homogeneous polynomials on Banach spaces.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Carando, Daniel Germán; Dimant, Veronica Isabel; Pinasco, Damian; On the convergence of random polynomials and multilinear forms; Academic Press Inc Elsevier Science; Journal of Functional Analysis; 261; 8; 10-2011; 2135-2163
Compartir
Altmétricas