Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

One-class support vector machines for personalized tag-based resource classification in social bookmarking systems

Godoy, Daniela LisIcon
Fecha de publicación: 01/2012
Editorial: Wiley
Revista: Concurrency and Computation: Practice & Experience
ISSN: 1532-0626
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Social tagging systems allow users to easily create, organize and share collections of Web resources in a collaborative fashion. Videos, pictures, research papers and Web pages are shared and annotated in sites such as Del.icio.us, CiteULike or Flickr, among others. The rising popularity of these systems leads to a constant increase in the number of users actively publishing and annotating resources and, consequently, an exponential growth in the amount of data contained in their folksonomies, the underlying data structure of tagging systems. In turn, the user task of discovering interesting resources becomes more and more difficult and time-consuming. In this paper the problem of filtering resources from social tagging systems according to individual user interests using purely tagging data is studied. One-class Support Vector Machine (SVM) classification is evaluated as a means to identify relevant information for users based exclusively on positive examples of their information preferences. It is assumed that users express their interest on resources belonging to a folksonomy by assigning tags to them, whereas there is not an straightforward method to collect uninterestingness judgments. Filtering interesting resources based on social tags is an important benefit of exploiting the collective knowledge generated by tagging activities of Web communities. In this paper, the results achieved with tag-based classification are compared with those obtained using more traditional information sources such as the full-text of Web pages. Experimental evaluation showed that tag-based classifiers outperformed those learned using the text of documents as well as other content-related sources. Moreover, tag-based classification becomes essential for folksonomies in which no additional content is available because of the nature of resources being stored (e.g. tagging of photos or videos).
Palabras clave: Social Tagging Systems , One-Class Classification , Social Media Search , Folksonomies
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 344.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/6843
DOI: http://dx.doi.org/10.1002/cpe.2892
DOI: http://dx.doi.org/ 10.1002/cpe.2892
URL: http://onlinelibrary.wiley.com/doi/10.1002/cpe.2892/full
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Godoy, Daniela Lis; One-class support vector machines for personalized tag-based resource classification in social bookmarking systems; Wiley; Concurrency and Computation: Practice & Experience; 24; 7; 1-2012; 2193-2206
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES