Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling

Yannibelli, Virginia DanielaIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 09/2015
Editorial: Springer
Revista: Lecture Notes In Computer Science
ISSN: 0302-9743
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

In this paper, we address a project scheduling problem that considers a priority optimization objective for project managers. This objective involves assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm uses adaptive crossover, mutation and simulated annealing processes in order to improve the performance of the evolutionary search. These processes adapt their behavior based on the diversity of the evolutionary algorithm population. We compare the performance of the hybrid evolutionary algorithm with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results indicate that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.
Palabras clave: Project Scheduling , Human Resource Assignment , Multi-Skilled Resources , Hybrid Evolutionary Algorithms
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 120.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/6838
URL: http://link.springer.com/chapter/10.1007%2F978-3-319-24834-9_40
DOI: http://dx.doi.org/10.1007/978-3-319-24834-9_40
DOI: http://dx.doi.org/ 10.1007/978-3-319-24834-9_40
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Yannibelli, Virginia Daniela; Amandi, Analia Adriana; Hybrid Evolutionary Algorithm with Adaptive Crossover, Mutation and Simulated Annealing Processes to Project Scheduling; Springer; Lecture Notes In Computer Science; 9375; 9-2015; 340-351
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES