Mostrar el registro sencillo del ítem
dc.contributor.author
Feldman, Juan
dc.contributor.author
Monteserin, Ariel José
dc.contributor.author
Amandi, Analia Adriana
dc.date.available
2016-07-29T21:40:27Z
dc.date.issued
2015-08
dc.identifier.citation
Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Automatic detection of learning styles: state of the art; Springer; Artificial Intelligence Review; 44; 2; 8-2015; 157-186
dc.identifier.issn
0269-2821
dc.identifier.uri
http://hdl.handle.net/11336/6832
dc.description.abstract
A learning style describes the attitudes and behaviors, which determine an individual´s preferred way of learning. Learning styles are particularly important in educational settings since they may help students and tutors become more self-aware of their strengths and weaknesses as learners. The traditional way to identify learning styles is using a test or questionnaire. Despite being reliable, these instruments present some problems that hinder the learning style identification. Some of these problems include students´ lack of motivation to fill out a questionnaire and lack of self-awareness of their learning preferences. Thus, over the last years, several approaches have been proposed for automatically detecting learning styles, which aim to solve these problems. In this work, we review and analyze current trends in the field of automatic detection of learning styles. We present the results of our analysis and discuss some limitations, implications and research gaps that can be helpful to researchers working in the field of learning styles.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Learning Styles
dc.subject
User Model
dc.subject
Educational Systems
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automatic detection of learning styles: state of the art
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-07-29T18:33:18Z
dc.journal.volume
44
dc.journal.number
2
dc.journal.pagination
157-186
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Feldman, Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.journal.title
Artificial Intelligence Review
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s10462-014-9422-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10462-014-9422-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10462-014-9422-6
Archivos asociados