Mostrar el registro sencillo del ítem
dc.contributor.author
Locatelli, Isabella
dc.contributor.author
Marazzi, Alfio Natale
dc.contributor.author
Yohai, Victor Jaime
dc.date.available
2019-01-21T18:45:25Z
dc.date.issued
2011-01
dc.identifier.citation
Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-887
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/68308
dc.description.abstract
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Accelerated Failure Time Models
dc.subject
Censoring
dc.subject
Robust Regression
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust accelerated failure time regression
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-14T18:07:30Z
dc.journal.volume
55
dc.journal.number
1
dc.journal.pagination
874-887
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
dc.description.fil
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2010.07.017
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947310002963
Archivos asociados