Mostrar el registro sencillo del ítem

dc.contributor.author
Locatelli, Isabella  
dc.contributor.author
Marazzi, Alfio Natale  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2019-01-21T18:45:25Z  
dc.date.issued
2011-01  
dc.identifier.citation
Locatelli, Isabella; Marazzi, Alfio Natale; Yohai, Victor Jaime; Robust accelerated failure time regression; Elsevier Science; Computational Statistics and Data Analysis; 55; 1; 1-2011; 874-887  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/68308  
dc.description.abstract
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generated according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Accelerated Failure Time Models  
dc.subject
Censoring  
dc.subject
Robust Regression  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust accelerated failure time regression  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-14T18:07:30Z  
dc.journal.volume
55  
dc.journal.number
1  
dc.journal.pagination
874-887  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Locatelli, Isabella. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza  
dc.description.fil
Fil: Marazzi, Alfio Natale. Universite de Lausanne; Suiza. Institute for Social and Preventive Medicine; Suiza  
dc.description.fil
Fil: Yohai, Victor Jaime. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2010.07.017  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947310002963