Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006)

Pacini Naumovich, Elina RocíoIcon ; Mateos Diaz, Cristian MaximilianoIcon ; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 06/2015
Editorial: Elsevier
Revista: Advances In Engineering Software
ISSN: 0965-9978
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

The Cloud Computing paradigm focuses on the provisioning of reliable and scalable infrastructures (Clouds) delivering execution and storage services. The paradigm, with its promise of virtually infinite resources, seems to suit well in solving resource greedy scientific computing problems. The goal of this work is to study private Clouds to execute scientific experiments coming from multiple users, i.e., our work focuses on the Infrastructure as a Service (IaaS) model where custom Virtual Machines (VM) are launched in appropriate hosts available in a Cloud. Then, correctly scheduling Cloud hosts is very important and it is necessary to develop efficient scheduling strategies to appropriately allocate VMs to physical resources. The job scheduling problem is however NP-complete, and therefore many heuristics have been developed. In this work, we describe and evaluate a Cloud scheduler based on Ant Colony Optimization (ACO). The main performance metrics to study are the number of serviced users by the Cloud and the total number of created VMs in online (non-batch) scheduling scenarios. Besides, the number of intra-Cloud network messages sent are evaluated. Simulated experiments performed using CloudSim and job data from real scientific problems show that our scheduler succeeds in balancing the studied metrics compared to schedulers based on Random assignment and Genetic Algorithms.
Palabras clave: Cloud Computing , Scientific Problems , Job Scheduling , Swarm Intelligence , Ant Colony Optimization , Genetic Algorithms
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.272Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/6829
URL: http://www.sciencedirect.com/science/article/pii/S096599781500006X
DOI: http://dx.doi.org/ 10.1016/j.advengsoft.2015.01.005
DOI: http://dx.doi.org/10.1016/j.advengsoft.2015.01.005
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Pacini Naumovich, Elina Rocío; Mateos Diaz, Cristian Maximiliano; Garcia Garino, Carlos Gabriel; Balancing throughput and response time in online scientific Clouds via Ant Colony Optimization (SP2013/2013/00006); Elsevier; Advances In Engineering Software; 84; 6-2015; 31-47
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES