Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Mean estimation with data missing at random for functional covariables

Ferraty, Frédéric; Sued, Raquel MarielaIcon ; Vieu, Philippe
Fecha de publicación: 08/2013
Editorial: Taylor & Francis
Revista: Statistics
ISSN: 0233-1888
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

In a missing-data setting, we want to estimate the mean of a scalar outcome, based on a sample in which an explanatory variable is observed for every subject while responses are missing by happenstance for some of them. We consider two kinds of estimates of the mean response when the explanatory variable is functional. One is based on the average of the predicted values and the second one is a functional adaptation of the Horvitz-Thompson estimator. We show that the infinite dimensionality of the problem does not affect the rates of convergence by stating that the estimates are root-n consistent, under missing at random (MAR) assumption. These asymptotic features are completed by simulated experiments illustrating the easiness of implementation and the good behaviour on finite sample sizes of the method. This is the first paper emphasizing that the insensitiveness of averaged estimates, well known in multivariate non-parametric statistics, remains true for an infinite-dimensional covariable. In this sense, this work opens the way for various other results of this kind in functional data analysis.
Palabras clave: Averaged Non-Parametric Estimates , Functional Covariable , Missing at Random , Non-Parametric Functional Kernel Regression , Root-N Consistency
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 279.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/68289
URL: https://www.tandfonline.com/doi/abs/10.1080/02331888.2011.650172
DOI: http://dx.doi.org/10.1080/02331888.2011.650172
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Ferraty, Frédéric; Sued, Raquel Mariela; Vieu, Philippe; Mean estimation with data missing at random for functional covariables; Taylor & Francis; Statistics; 47; 4; 8-2013; 688-706
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES