Artículo
Big data and partial least-squares prediction
Fecha de publicación:
03/2018
Editorial:
Wiley Blackwell Publishing, Inc
Revista:
Canadian Journal Of Statistics-revue Canadienne de Statistique
ISSN:
0319-5724
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We give a commentary on the challenges of big data for Statistics. We then narrow our discussion to one of those challenges: dimension reduction. This leads to consideration of one particular dimension reduction method—partial least-squares (PLS) regression—for prediction in big high-dimensional regressions where the sample size and the number of predictors are both large. We show that in some regression contexts single-component PLS predictions converge at the usual root-n rate as n,p → ∞ regardless of the relationship between the sample size n and number of predictors p. Asymptotically, PLS predictions then behave as regression predictions in the usual context where p is fixed and n→ ∞ These results support the conjecture that PLS regression can be an effective method for prediction in big high-dimensional regressions.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Cook, R. Dennis; Forzani, Liliana Maria; Big data and partial least-squares prediction; Wiley Blackwell Publishing, Inc; Canadian Journal Of Statistics-revue Canadienne de Statistique; 46; 1; 3-2018; 62-78
Compartir
Altmétricas