Mostrar el registro sencillo del ítem

dc.contributor.author
Amandi, Analia Adriana  
dc.contributor.author
Yannibelli, Virginia Daniela  
dc.date.available
2016-07-29T15:06:54Z  
dc.date.issued
2014-09  
dc.identifier.citation
Amandi, Analia Adriana; Yannibelli, Virginia Daniela; A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem; Springer; Lecture Notes In Computer Science; 8669; 9-2014; 412-423  
dc.identifier.issn
0302-9743  
dc.identifier.uri
http://hdl.handle.net/11336/6798  
dc.description.abstract
In this paper, we address a project scheduling problem. This problem considers a priority optimization objective for project managers. This objective implies assigning the most effective set of human resources to each project activity. To solve the problem, we propose a hybrid evolutionary algorithm. This algorithm incorporates a diversity-adaptive simulated annealing algorithm into the framework of an evolutionary algorithm with the aim of improving the performance of the evolutionary search. The simulated annealing algorithm adapts its behavior according to the fluctuation of diversity of evolutionary algorithm population. The performance of the hybrid evolutionary algorithm on six different instance sets is compared with those of the algorithms previously proposed in the literature for solving the addressed problem. The obtained results show that the hybrid evolutionary algorithm significantly outperforms the previous algorithms.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Project Scheduling  
dc.subject
Human Resource Assignment  
dc.subject
Multi-Skilled Resources  
dc.subject
Hybrid Evolutionary Algorithms  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Diversity-Adaptive Hybrid Evolutionary Algorithm to Solve a Project Scheduling Problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-07-28T18:32:04Z  
dc.journal.volume
8669  
dc.journal.pagination
412-423  
dc.journal.pais
Alemania  
dc.journal.ciudad
Heidelberg  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Yannibelli, Virginia Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.journal.title
Lecture Notes In Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-10840-7_50  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/978-3-319-10840-7_50  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-10840-7_50