Mostrar el registro sencillo del ítem

dc.contributor.author
Busalmen, Juan Pablo  
dc.contributor.author
Esteve Núñez, Abraham  
dc.contributor.author
Miguel Feliu, Juan  
dc.date.available
2019-01-14T14:18:11Z  
dc.date.issued
2008-04  
dc.identifier.citation
Busalmen, Juan Pablo; Esteve Núñez, Abraham; Miguel Feliu, Juan; Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport; American Chemical Society; Environmental Science & Technology; 42; 7; 4-2008; 2445-2450  
dc.identifier.issn
0013-936X  
dc.identifier.uri
http://hdl.handle.net/11336/67967  
dc.description.abstract
The mechanism(s) by which electricity-producing microorganisms interact with an electrode is poorly understood. Outer membrane cytochromes and conductive pili are being considered as possible players, but the available information does not concur to a consensus mechanism yet. In this work we demonstrate that Geobacter sulfurreducens cells are able to change the way in which they exchange electrons with an electrode as a response to changes in the applied electrode potential. After several hours of polarization at 0.1 VAg/AgCl-KCl (saturated), the voltammetric signature of the attached cells showed a single redox pair with a formal redox potential of about -0.08 V as calculated from chronopotentiometric analysis. A similar signal was obtained from cells adapted to 0.4 V. However, new redox couples were detected after conditioning at 0.6 V. A large oxidation process beyond 0.5 V transferring a higher current than that obtained at 0.1 V was found to be associated with two reduction waves at 0.23 and 0.50 V. The apparent equilibrium potential of these new processes was estimated to be at about 0.48 V from programmed current potentiometric results. Importantly, when polarization was lowered again to 0.1 V for 18 additional hours, the signals obtained at 0.6 V were found to greatly diminish in amplitude, whereas those previously found at the lower conditioning potential were recovered. Results clearly show the reversibility of cell adaptation to the electrode potential and point to the polarization potential as a key variable to optimize energy production from an electricity producing population.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Electrode-Reducing Bacteria  
dc.subject
Bioenergy  
dc.subject
Bioelectrochemistry  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exocellular electron transport  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-09T14:23:58Z  
dc.journal.volume
42  
dc.journal.number
7  
dc.journal.pagination
2445-2450  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Busalmen, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Esteve Núñez, Abraham. Universidad de Alicante; España  
dc.description.fil
Fil: Miguel Feliu, Juan. Universidad de Alicante; España  
dc.journal.title
Environmental Science & Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/es702569y  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/es702569y