Mostrar el registro sencillo del ítem
dc.contributor.author
Mazzieri, Gisela Luciana
dc.contributor.author
Spies, Ruben Daniel
dc.contributor.author
Temperini, Karina Guadalupe
dc.date.available
2019-01-12T13:13:00Z
dc.date.issued
2015-12
dc.identifier.citation
Mazzieri, Gisela Luciana; Spies, Ruben Daniel; Temperini, Karina Guadalupe; Mixed spatially varying L2-BV regularization of inverse ill-posed problems; De Gruyter; Journal Of Inverse And Ill-posed Problems; 23; 6; 12-2015; 571-585
dc.identifier.issn
0928-0219
dc.identifier.uri
http://hdl.handle.net/11336/67966
dc.description.abstract
Several generalizations of the traditional Tikhonov-Phillips regularization method have been proposed during the last two decades. Many of these generalizations are based upon inducing stability throughout the use of different penalizers which allow the capturing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in some problems in which it is known that the regularity of the exact solution is heterogeneous and/or anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or more penalizers of different nature. Such is the case, for instance, in some image restoration problems in which preservation of edges, borders or discontinuities is an important matter. In this work we present some results on the simultaneous use of penalizers of L2 and of bounded variation (BV) type. For particular cases, existence and uniqueness results are proved. Open problems are discussed and results to signal restoration problems are presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
De Gruyter
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Ill-Posed
dc.subject
Inverse Problem
dc.subject
Regularization
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Mixed spatially varying L2-BV regularization of inverse ill-posed problems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2019-01-11T18:44:47Z
dc.journal.volume
23
dc.journal.number
6
dc.journal.pagination
571-585
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Mazzieri, Gisela Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.description.fil
Fil: Temperini, Karina Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Journal Of Inverse And Ill-posed Problems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/jiip
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1515/jiip-2014-0034
Archivos asociados