Artículo
LDR: A Package for Likelihood-Based Sufficient Dimension Reduction
Fecha de publicación:
03/2011
Editorial:
Journal Statistical Software
Revista:
Journal Of Statistical Software
ISSN:
1548-7660
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce a new MATLAB software package that implements several recently proposed likelihood-based methods for sufficient dimension reduction. Current capabilities include estimation of reduced subspaces with a fixed dimension d, as well as estimation of d by use of likelihood-ratio testing, permutation testing and information criteria. The methods are suitable for preprocessing data for both regression and classification. Implementations of related estimators are also available. Although the software is more oriented to command-line operation, a graphical user interface is also provided for prototype computations.
Palabras clave:
Dimension Reduction
,
Inverse Regression
,
Principal Components
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Cook, R. Dennis; Forzani, Liliana Maria; Tomassi, Diego Rodolfo; LDR: A Package for Likelihood-Based Sufficient Dimension Reduction; Journal Statistical Software; Journal Of Statistical Software; 39; 3; 3-2011; 1-1
Compartir