Mostrar el registro sencillo del ítem

dc.contributor.author
Tilghman, Robert W.  
dc.contributor.author
Blais, Edik M.  
dc.contributor.author
Cowan, Catharine R.  
dc.contributor.author
Sherman, Nicholas E.  
dc.contributor.author
Grigera, Pablo Rafael  
dc.contributor.author
Jeffery, Erin D.  
dc.contributor.author
Fox, Jay W.  
dc.contributor.author
Blackman, Brett R.  
dc.contributor.author
Tschumperlin, Daniel J.  
dc.contributor.author
Papin, Jason A.  
dc.contributor.author
Parsons, J. Thomas  
dc.date.available
2019-01-09T20:05:37Z  
dc.date.issued
2012-05  
dc.identifier.citation
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo Rafael; et al.; Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis; Public Library of Science; Plos One; 7; 5; 5-2012; 1-11; e37231  
dc.identifier.issn
1932-6203  
dc.identifier.uri
http://hdl.handle.net/11336/67839  
dc.description.abstract
Background: Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings: This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150-300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance: The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Matrix Rigidity  
dc.subject
Cancer  
dc.subject
Silac  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-09T17:47:03Z  
dc.journal.volume
7  
dc.journal.number
5  
dc.journal.pagination
1-11; e37231  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Tilghman, Robert W.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Blais, Edik M.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Cowan, Catharine R.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Sherman, Nicholas E.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Grigera, Pablo Rafael. University of Virginia; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología ; Argentina  
dc.description.fil
Fil: Jeffery, Erin D.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Fox, Jay W.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Blackman, Brett R.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Tschumperlin, Daniel J.. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Papin, Jason A.. University of Virginia; Estados Unidos  
dc.description.fil
Fil: Parsons, J. Thomas. University of Virginia; Estados Unidos  
dc.journal.title
Plos One  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0037231  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037231  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3356407/