Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez, Juan Manuel  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.date.available
2016-07-28T19:41:21Z  
dc.date.issued
2014-02  
dc.identifier.citation
Rodriguez, Juan Manuel; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices; Springer Wien; Computing; 96; 2; 2-2014; 87-117  
dc.identifier.issn
0010-485X  
dc.identifier.uri
http://hdl.handle.net/11336/6779  
dc.description.abstract
Mobile devices have evolved from simple electronic agendas and mobile phones to small computers with great computational capabilities. In addition, there are more than 2 billion mobile devices around the world. Taking these facts into account, mobile devices are a potential source of computational resources for clusters and computational Grids. In this work, we present an analysis of different schedulers based on job stealing for mobile computational Grids. These job stealing techniques have been designed to consider energy consumption and battery status. As a result of this work, we present empirical evidence showing that energy-aware job stealing is more efficient than traditional random stealing in this context. In particular, our results show that mobile Grids using energy-aware job stealing might finish up to 11% more jobs than when using random stealing, and up to 24% more jobs than when not using any job stealing technique. This means that using energy-aware job stealing increases the energy efficiency of mobile computational Grids because it increases the number of jobs that can be executed using the same amount of energy.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer Wien  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Mobile Grid  
dc.subject
Mobile Devices  
dc.subject
Job Stealing  
dc.subject
Cpu Intensive Application  
dc.subject
Job Scheduling  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Energy-efficient Job Stealing for CPU-intensive processing in Mobile Devices  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-07-28T18:33:42Z  
dc.journal.volume
96  
dc.journal.number
2  
dc.journal.pagination
87-117  
dc.journal.pais
Austria  
dc.journal.ciudad
Viena  
dc.description.fil
Fil: Rodriguez, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.journal.title
Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs00607-012-0245-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00607-012-0245-5  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00607-012-0245-5