Mostrar el registro sencillo del ítem
dc.contributor.author
Amandi, Analia Adriana
dc.contributor.author
Monteserin, Ariel José
dc.date.available
2016-07-28T19:37:31Z
dc.date.issued
2013-05
dc.identifier.citation
Amandi, Analia Adriana; Monteserin, Ariel José; A Reinforcement Learning Approach to Improve the Argument Selection Effectiveness in Argumentation-based Negotiation; Elsevier; Expert Systems with Applications; 40; 6; 5-2013; 2182-2188
dc.identifier.issn
0957-4174
dc.identifier.uri
http://hdl.handle.net/11336/6778
dc.description.abstract
Argument selection is considered the essence of the strategy in argumentation-based negotiation. An agent, which is arguing during a negotiation, must decide what arguments are the best to persuade the opponent. In fact, in each negotiation step, the agent must select an argument from a set of candidate arguments by applying some selection policy. Following this policy, the agent observes some factors of the negotiation context, for instance: trust in the opponent and expected utility of the negotiated agreement, among others. Usually, argument selection policies are dened statically. However, as the negotiation context varies from a negotiation to another, dening a static selection policy it is not useful. Therefore, the agent should modify its selection policy in order to adapt it to the dierent negotiation contexts as the agent´s experience increases. In this paper, we present a reinforcement learning approach that allows the agent to improve the argument selection eciency by updating the argument selection policy. To carry out this goal, the argument selection mechanism is represented as a reinforcement learning model. We tested this approach in a multiagent system, in a stationary as well as in a dynamic environment, and obtained promising results in both.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.subject
Reinforcement Learning
dc.subject
Argument Selection
dc.subject
Argumentation-Based Negotiation
dc.subject
Autonomous Agents
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A Reinforcement Learning Approach to Improve the Argument Selection Effectiveness in Argumentation-based Negotiation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-07-28T18:31:53Z
dc.journal.volume
40
dc.journal.number
6
dc.journal.pagination
2182-2188
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
dc.journal.title
Expert Systems with Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2012.10.045
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011694
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.045
Archivos asociados