Mostrar el registro sencillo del ítem

dc.contributor.author
Amandi, Analia Adriana  
dc.contributor.author
Monteserin, Ariel José  
dc.date.available
2016-07-28T19:37:31Z  
dc.date.issued
2013-05  
dc.identifier.citation
Amandi, Analia Adriana; Monteserin, Ariel José; A Reinforcement Learning Approach to Improve the Argument Selection Effectiveness in Argumentation-based Negotiation; Elsevier; Expert Systems with Applications; 40; 6; 5-2013; 2182-2188  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/6778  
dc.description.abstract
Argument selection is considered the essence of the strategy in argumentation-based negotiation. An agent, which is arguing during a negotiation, must decide what arguments are the best to persuade the opponent. In fact, in each negotiation step, the agent must select an argument from a set of candidate arguments by applying some selection policy. Following this policy, the agent observes some factors of the negotiation context, for instance: trust in the opponent and expected utility of the negotiated agreement, among others. Usually, argument selection policies are dened statically. However, as the negotiation context varies from a negotiation to another, dening a static selection policy it is not useful. Therefore, the agent should modify its selection policy in order to adapt it to the dierent negotiation contexts as the agent´s experience increases. In this paper, we present a reinforcement learning approach that allows the agent to improve the argument selection eciency by updating the argument selection policy. To carry out this goal, the argument selection mechanism is represented as a reinforcement learning model. We tested this approach in a multiagent system, in a stationary as well as in a dynamic environment, and obtained promising results in both.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Reinforcement Learning  
dc.subject
Argument Selection  
dc.subject
Argumentation-Based Negotiation  
dc.subject
Autonomous Agents  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A Reinforcement Learning Approach to Improve the Argument Selection Effectiveness in Argumentation-based Negotiation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-07-28T18:31:53Z  
dc.journal.volume
40  
dc.journal.number
6  
dc.journal.pagination
2182-2188  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Amandi, Analia Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.description.fil
Fil: Monteserin, Ariel José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2012.10.045  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0957417412011694  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.eswa.2012.10.045