Mostrar el registro sencillo del ítem

dc.contributor.author
García, Sebastián  
dc.contributor.author
Grill, M.  
dc.contributor.author
Stiborek, J.  
dc.contributor.author
Zunino Suarez, Alejandro Octavio  
dc.date.available
2016-07-28T19:30:27Z  
dc.date.issued
2014-06  
dc.identifier.citation
García, Sebastián; Grill, M.; Stiborek, J.; Zunino Suarez, Alejandro Octavio; An Empirical Comparison of Botnet Detection Methods; Elsevier; Computers & Security; 45; 6-2014; 100-123  
dc.identifier.issn
0167-4048  
dc.identifier.uri
http://hdl.handle.net/11336/6772  
dc.description.abstract
The results of botnet detection methods are usually presented without any comparison. Although it is generally accepted that more comparisons with third-party methods may help to improve the area, few papers could do it. Among the factors that prevent a comparison are the difficulties to share a dataset, the lack of a good dataset, the absence of a proper description of the methods and the lack of a comparison methodology. This paper compares the output of three different botnet detection methods by executing them over a new, real, labeled and large botnet dataset. This dataset includes botnet, normal and background traffic. The results of our two methods (BClus and CAMNEP) and BotHunter were compared using a methodology and a novel error metric designed for botnet detections methods. We conclude that comparing methods indeed helps to better estimate how good the methods are, to improve the algorithms, to build better datasets and to build a comparison methodology.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Botnet Detection  
dc.subject
Malware Detection  
dc.subject
Methods Comparison  
dc.subject
Botnet Dataset  
dc.subject
Anomaly Detection  
dc.subject
Network Traffic  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An Empirical Comparison of Botnet Detection Methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-07-28T18:33:58Z  
dc.journal.volume
45  
dc.journal.pagination
100-123  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: García, Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa  
dc.description.fil
Fil: Grill, M.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa  
dc.description.fil
Fil: Stiborek, J.. Czech Technical University in Prague. Department of Computer Science and Engineering. Agents Technology Group; República Checa  
dc.description.fil
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina  
dc.journal.title
Computers & Security  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0167404814000923  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cose.2014.05.011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.cose.2014.05.011