Mostrar el registro sencillo del ítem

dc.contributor.author
Febbo, Mariano  
dc.date.available
2019-01-07T19:38:43Z  
dc.date.issued
2011-03  
dc.identifier.citation
Febbo, Mariano; A finite extensibility nonlinear oscillator; Elsevier Science Inc; Applied Mathematics and Computation; 217; 14; 3-2011; 6464-6475  
dc.identifier.issn
0096-3003  
dc.identifier.uri
http://hdl.handle.net/11336/67610  
dc.description.abstract
The dynamics of a finite extensibility nonlinear oscillator (FENO) is studied analytically by means of two different approaches: a generalized decomposition method (GDM) and a linearized harmonic balance procedure (LHB). From both approaches, analytical approximations to the frequency of oscillation and periodic solutions are obtained, which are valid for a large range of amplitudes of oscillation. Within the generalized decomposition method, two different versions are presented, which provide different kinds of approximate analytical solutions. In the first version, it is shown that the truncation of the perturbation solution up to the third order provides a remarkable degree of accuracy for almost the whole range of amplitudes. The second version, which expands the nonlinear term in Taylor's series around the equilibrium point, exhibits a little lower degree of accuracy, but it supplies an infinite series as the approximate solution. On the other hand, a linearized harmonic balance method is also employed, and the comparison between the approximate period and the exact one (numerically calculated) is slightly better than that obtained by both versions of the GDM. In general, the agreement between the results obtained by the three methods and the exact solution (numerically integrated) for amplitudes (A) between 0 < A ≤ 0.9 is very good both for the period and the amplitude of oscillation. For the rest of the amplitude range (0.9 < A < 1), an exponentially large L2 error demonstrates that all three approximations do not represent a good description for the FENO, and higher order perturbation solutions are needed instead. As a complement, very accurate asymptotic representations of the period are provided for the whole range of amplitudes of oscillation. © 2011 Elsevier Inc. All rights reserved.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Finite Extensibility  
dc.subject
Nonlinear Oscillator  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A finite extensibility nonlinear oscillator  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2019-01-02T18:20:17Z  
dc.journal.volume
217  
dc.journal.number
14  
dc.journal.pagination
6464-6475  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Febbo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina  
dc.journal.title
Applied Mathematics and Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.amc.2011.01.011  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0096300311000257