Mostrar el registro sencillo del ítem

dc.contributor.author
Dianda, Daniela Fernanda  
dc.date.available
2018-12-28T13:11:38Z  
dc.date.issued
2017-02  
dc.identifier.citation
Dianda, Daniela Fernanda; Robustness of Predictive Data Mining Methods under the Presence of Measurement Errors in the Context of Production Processes; IOSR Journals; IOSR Journal of Computer Engineering; 19; 01; 2-2017; 90-98  
dc.identifier.issn
2278-0661  
dc.identifier.uri
http://hdl.handle.net/11336/67129  
dc.description.abstract
One of the main objectives of data analysis in industrial contexts is prediction, that is, to identify a function that allows predicting the value of a response from the values of other variables considered as potential predictors of this outcome. The large volumes of data that current technology allows to generate and store have made it necessary to develop methods of analysis alternative to the traditional ones to achieve this objective, which allow mainly to process these large amounts of information and to predict the response in real time. Enclosed under the name of Data Mining, many of these new methods are based on automatic algorithms mostly originated in the computer field. However, the quality of the information that feeds these procedures remains a key factor in ensuring the reliability of the results. With this premise, in this work we study the effect that the presence of faults in the measurement devices that originate the information to be analyzed, can cause on the predictive ability of one of the predictive methods of data mining, the decision trees. The results are compared with those obtained using one of the traditional statistical techniques: multiple linear regression. The results obtained indicate that the effect of measurement related errors on the predictive ability of decision trees, compared to traditional regression models, depends on the nature of the measurement error.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOSR Journals  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cart Decision Trees  
dc.subject
Linear Regression  
dc.subject
Measurement Error  
dc.subject
Prediction Error  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robustness of Predictive Data Mining Methods under the Presence of Measurement Errors in the Context of Production Processes  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-12-19T13:05:05Z  
dc.journal.volume
19  
dc.journal.number
01  
dc.journal.pagination
90-98  
dc.journal.pais
India  
dc.description.fil
Fil: Dianda, Daniela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias económicas y Estadística. Escuela de Estadística. Instituto de Investigaciones Teóricas y Aplicadas; Argentina  
dc.journal.title
IOSR Journal of Computer Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.9790/0661-1901049098  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.iosrjournals.org/iosr-jce/papers/Vol19-issue1/Version-4/R1901049098.pdf