Mostrar el registro sencillo del ítem
dc.contributor.author
Vicentin Masaro, Jimena
dc.contributor.author
García Arancibia, Rodrigo
dc.date.available
2018-12-27T19:50:22Z
dc.date.issued
2016-05
dc.identifier.citation
Vicentin Masaro, Jimena; García Arancibia, Rodrigo; Redes neuronales para la predicción de precios en el sector lácteo argentino; Universidad de Buenos Aires. Facultad de Ciencias Económicas; Cuadernos del CIMBAGE; 19; 1; 5-2016; 115-136
dc.identifier.issn
1666-5112
dc.identifier.uri
http://hdl.handle.net/11336/67111
dc.description.abstract
Realizar pronósticos sobre precios resulta muy importante no sólo para la toma de decisiones de un sector productivo, sino también para la elaboración de políticas públicas; ya que permite reducir la incertidumbre de los posibles escenarios a los que se puede enfrentar dicho sector. Los precios son una variable clave en el análisis sectorial, y contar con estimaciones confiables de los mismos no es tarea fácil, mucho menos en países con alta volatilidad como lo es Argentina. A partir de una revisión de antecedentes, se ha encontrado que los métodos lineales multivariados han liderado en esta área de predicciones económicas. Sin embargo, trabajos recientes empiezan a implementar mecanismos no lineales que, mediante un diseño sencillo, han logrado una performance predictiva competentes a las primeras, al menos en el área económica. Dentro de estos mecanismos no lineales se encuentran las redes neuronales. El presente trabajo tiene como objetivo ajustar un modelo de red neuronal para realizar predicciones aplicadas al sector lácteo argentino, y comparar los resultados con las predicciones que arroja un modelo multivariado de series de tiempo. Sobre una base de datos mensual disponible para variables del sector desde 2000 a 2012, se logra obtener una red con tres capas, cuya capa interna tiene sólo dos nodos, para predecir los precios mensuales pagados a los productores tamberos. Los resultados obtenidos muestran que mediante una estructura sencilla y parsimoniosa de redes neuronales, pueden obtenerse mejores resultados predictivos respecto a alternativas más tradicionales de series de tiempo.
dc.description.abstract
Forecasting prices is a very important aim not only to takes decision in a productive sector, but also for the development of policies in public sector; as it reduces the uncertainty of the possible scenarios that may face this productive sector. Prices are a key variable in the sectoral analysis, and doing good estimates of them is no easy task, much less in countries with high volatility like Argentina. Through a revision of bibliography, it has been found that multivariate linear methods have predominated in this area to economic forecasts. However, recent studies begin to implement nonlinear mechanisms, which with a simple design, have achieved a competent predictive performance to the first methodology, at least in the economic area. Within these new mechanisms, there are the nonlinear neural networks. This paper aims to get a neural network model to make predictions to the Argentine dairy sector, and compare its results with the predictions resulting in a multivariate time series model. It been obtained a monthly data of some variables in the sector since 2000 to 2012, and with them it was possible to obtain a network with three layers, the hidden layer has only two nodes, to predict the monthly prices paid to dairy farmers. The results show that by a simple and parsimonious neural network structure can be obtained better predictive results than traditional methodology.
dc.format
application/pdf
dc.language.iso
spa
dc.publisher
Universidad de Buenos Aires. Facultad de Ciencias Económicas
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Predicción
dc.subject
Precios
dc.subject
Redes Nuronales
dc.subject
Sector Lácteo Argentino
dc.subject.classification
Economía, Econometría
dc.subject.classification
Economía y Negocios
dc.subject.classification
CIENCIAS SOCIALES
dc.title
Redes neuronales para la predicción de precios en el sector lácteo argentino
dc.title
Artificial neural networks to predict argentine’s dairy sector prices
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-11T17:41:18Z
dc.journal.volume
19
dc.journal.number
1
dc.journal.pagination
115-136
dc.journal.pais
Argentina
dc.journal.ciudad
Ciudad Autónoma de Buenos Aires
dc.description.fil
Fil: Vicentin Masaro, Jimena. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: García Arancibia, Rodrigo. Universidad Nacional del Litoral. Facultad de Ciencias Económicas. Instituto de Economía Aplicada Litoral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Cuadernos del CIMBAGE
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ojs.econ.uba.ar/ojs/index.php/CIMBAGE/article/view/1166
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.redalyc.org/articulo.oa?id=46251257002
Archivos asociados