Mostrar el registro sencillo del ítem
dc.contributor.author
Andrada, Matias Fernando
dc.contributor.author
Vega Hissi, Esteban Gabriel
dc.contributor.author
Estrada, Mario Rinaldo
dc.contributor.author
Garro Martinez, Juan Ceferino
dc.date.available
2018-12-27T17:56:30Z
dc.date.issued
2017-12
dc.identifier.citation
Andrada, Matias Fernando; Vega Hissi, Esteban Gabriel; Estrada, Mario Rinaldo; Garro Martinez, Juan Ceferino; Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models; Taylor & Francis Ltd; Sar And Qsar In Environmental Research; 28; 12; 12-2017; 1011-1023
dc.identifier.issn
1062-936X
dc.identifier.uri
http://hdl.handle.net/11336/67076
dc.description.abstract
This study performed an analysis of the influence of the training and test set rational selection on the quality and predictively of the quantitative structure–activity relationship (QSAR) model. The study was carried out on three different datasets of Influenza Neuraminidase (H1N1) inhibitors. The three datasets were divided into training and test sets using three rational selection methods: based on k-means, Kennard–Stone algorithm and Activity and the results were compared with Random selection. Then, a total of 31,490 mathematical models were developed and those models that presented a determination coefficient higher than: r2 train > 0.8, r2 loo > 0.7, r2 test > 0.5 and minimum standard deviation (SD) and minimum root-mean square error (RMS) were selected. The selected models were validated using the internal leave-one-out method and the predictive capacity was evaluated by the external test set. The results indicate that random selection could lead to erroneous results. In return, a rational selection allows for obtaining more reliable conclusions. The QSAR models with major predictive power were found using the k-means algorithm and selection by activity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Based on Activity
dc.subject
K-Means
dc.subject
Kennard&Ndash;Stone
dc.subject
Qsar
dc.subject
Random Selection
dc.subject
Rational Partition of Dataset
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-23T17:41:38Z
dc.identifier.eissn
1029-046X
dc.journal.volume
28
dc.journal.number
12
dc.journal.pagination
1011-1023
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Andrada, Matias Fernando. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Vega Hissi, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina
dc.description.fil
Fil: Estrada, Mario Rinaldo. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina
dc.description.fil
Fil: Garro Martinez, Juan Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina
dc.journal.title
Sar And Qsar In Environmental Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/1062936X.2017.1397056
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/1062936X.2017.1397056
Archivos asociados