Mostrar el registro sencillo del ítem

dc.contributor.author
Andrada, Matias Fernando  
dc.contributor.author
Vega Hissi, Esteban Gabriel  
dc.contributor.author
Estrada, Mario Rinaldo  
dc.contributor.author
Garro Martinez, Juan Ceferino  
dc.date.available
2018-12-27T17:56:30Z  
dc.date.issued
2017-12  
dc.identifier.citation
Andrada, Matias Fernando; Vega Hissi, Esteban Gabriel; Estrada, Mario Rinaldo; Garro Martinez, Juan Ceferino; Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models; Taylor & Francis Ltd; Sar And Qsar In Environmental Research; 28; 12; 12-2017; 1011-1023  
dc.identifier.issn
1062-936X  
dc.identifier.uri
http://hdl.handle.net/11336/67076  
dc.description.abstract
This study performed an analysis of the influence of the training and test set rational selection on the quality and predictively of the quantitative structure–activity relationship (QSAR) model. The study was carried out on three different datasets of Influenza Neuraminidase (H1N1) inhibitors. The three datasets were divided into training and test sets using three rational selection methods: based on k-means, Kennard–Stone algorithm and Activity and the results were compared with Random selection. Then, a total of 31,490 mathematical models were developed and those models that presented a determination coefficient higher than: r2 train > 0.8, r2 loo > 0.7, r2 test > 0.5 and minimum standard deviation (SD) and minimum root-mean square error (RMS) were selected. The selected models were validated using the internal leave-one-out method and the predictive capacity was evaluated by the external test set. The results indicate that random selection could lead to erroneous results. In return, a rational selection allows for obtaining more reliable conclusions. The QSAR models with major predictive power were found using the k-means algorithm and selection by activity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Based on Activity  
dc.subject
K-Means  
dc.subject
Kennard&Ndash;Stone  
dc.subject
Qsar  
dc.subject
Random Selection  
dc.subject
Rational Partition of Dataset  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-23T17:41:38Z  
dc.identifier.eissn
1029-046X  
dc.journal.volume
28  
dc.journal.number
12  
dc.journal.pagination
1011-1023  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Andrada, Matias Fernando. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Vega Hissi, Esteban Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina  
dc.description.fil
Fil: Estrada, Mario Rinaldo. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia; Argentina  
dc.description.fil
Fil: Garro Martinez, Juan Ceferino. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis. Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto Multidisciplinario de Investigaciones Biológicas de San Luis; Argentina  
dc.journal.title
Sar And Qsar In Environmental Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/1062936X.2017.1397056  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/1062936X.2017.1397056