Mostrar el registro sencillo del ítem
dc.contributor.author
Capriotti, Santiago
dc.contributor.author
Montani, Hugo Santos
dc.date.available
2018-12-26T14:18:11Z
dc.date.issued
2011-07
dc.identifier.citation
Capriotti, Santiago; Montani, Hugo Santos; Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group; American Institute of Physics; Journal of Mathematical Physics; 52; 7; 7-2011; 1-33
dc.identifier.issn
0022-2488
dc.identifier.uri
http://hdl.handle.net/11336/66951
dc.description.abstract
We study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. As the main application, we study integrable systems on these submanifolds as inherited from a system on the whole cotangent bundle, meeting in a natural way with the Adler-Kostant-Symes theory of integrability. © 2011 American Institute of Physics.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Dirac Equation
dc.subject
Integral Equations
dc.subject
Lie Groups
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-12-20T18:15:58Z
dc.journal.volume
52
dc.journal.number
7
dc.journal.pagination
1-33
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Capriotti, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; Argentina
dc.description.fil
Fil: Montani, Hugo Santos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
dc.journal.title
Journal of Mathematical Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1063/1.3603427
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.3603427
Archivos asociados