Artículo
Subspace Mapping of Noisy Text Documents
Fecha de publicación:
05/2011
Editorial:
Springer Verlag Berlín
Revista:
Lecture Notes in Computer Science
ISSN:
0302-9743
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Subspace mapping methods aim at projecting high-dimensional data into a subspace where a specific objective function is optimized. Such dimension reduction allows the removal of collinear and irrelevant variables for creating informative visualizations and task-related data spaces. These specific and generally de-noised subspaces spaces enable machine learning methods to work more eficiently. We present a new and general subspace mapping method, Correlative Matrix Mapping (CMM), and evaluate its abilities for category-driven text organization by assessing neighborhood preservation, class coherence, and classification. This approach is evaluated for the challenging task of processing short and noisy documents.
Palabras clave:
Mapping Method
,
Properties Prediction
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Soto, Axel Juan; Strickert, Marc; Vazquez, Gustavo Esteban; Milios, Evangelos; Subspace Mapping of Noisy Text Documents; Springer Verlag Berlín; Lecture Notes in Computer Science; 6657; 5-2011; 377-383
Compartir
Altmétricas