Mostrar el registro sencillo del ítem

dc.contributor.author
Di Russo, Natali V.  
dc.contributor.author
Marti, Marcelo Adrian  
dc.contributor.author
Roitberg, Adrián  
dc.date.available
2018-12-18T17:26:42Z  
dc.date.issued
2014-11  
dc.identifier.citation
Di Russo, Natali V.; Marti, Marcelo Adrian; Roitberg, Adrián; Underlying Thermodynamics of pH-Dependent Allostery; American Chemical Society; Journal of Physical Chemistry B; 118; 45; 11-2014; 12818-12826  
dc.identifier.issn
1520-6106  
dc.identifier.uri
http://hdl.handle.net/11336/66664  
dc.description.abstract
Understanding the effects of coupling protein protonation and conformational states is critical to the development of drugs targeting pH sensors and to the rational engineering of pH switches. In this work, we address this issue by performing a comprehensive study of the pH-regulated switch from the closed to the open conformation in nitrophorin 4 (NP4) that determines its pH-dependent activity. Our calculations show that D30 is the only amino acid that has two significantly different pKas in the open and closed conformations, confirming its critical role in regulating pH-dependent behavior. In addition, we describe the free-energy landscape of the conformational change as a function of pH, obtaining accurate estimations of free-energy barriers and equilibrium constants using different methods. The underlying thermodynamic model of the switch workings suggests the possibility of tuning the observed pKa only through the conformational equilibria, keeping the same conformation-specific pKas, as evidenced by the proposed K125L mutant. Moreover, coupling between the protonation and conformational equilibria results in efficient regulation and pH-sensing around physiological pH values only for some combinations of protonation and conformational equilibrium constants, placing constraints on their possible values and leaving a narrow space for protein molecular evolution. The calculations and analysis presented here are of general applicability and provide a guide as to how more complex systems can be studied, offering insight into how pH-regulated allostery works of great value for designing drugs that target pH sensors and for rational engineering of pH switches beyond the common histidine trigger.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ph-Dependent  
dc.subject
Allostery  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Underlying Thermodynamics of pH-Dependent Allostery  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-04T19:03:55Z  
dc.journal.volume
118  
dc.journal.number
45  
dc.journal.pagination
12818-12826  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Di Russo, Natali V.. University of Florida; Estados Unidos  
dc.description.fil
Fil: Marti, Marcelo Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Roitberg, Adrián. University of Florida; Estados Unidos  
dc.journal.title
Journal of Physical Chemistry B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/jp507971v  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/jp507971v