Artículo
Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces
Fecha de publicación:
04/2017
Editorial:
Birkhauser Boston Inc
Revista:
Journal Of Fourier Analysis And Applications
ISSN:
1069-5869
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We introduce extensions of the convex potentials for finite frames (e.g. the frame potential defined by Benedetto and Fickus) in the framework of Bessel sequences of integer translates of finite sequences in L2(Rk). We show that under a natural normalization hypothesis, these convex potentials detect tight frames as their minimizers. We obtain a detailed spectral analysis of the frame operators of shift generated oblique duals of a fixed frame of translates. We use this result to obtain the spectral and geometrical structure of optimal shift generated oblique duals with norm restrictions, that simultaneously minimize every convex potential; we approach this problem by showing that the water-filling construction in probability spaces is optimal with respect to submajorization (within an appropriate set of functions) and by considering a non-commutative version of this construction for measurable fields of positive operators.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Benac, Maria Jose; Massey, Pedro Gustavo; Stojanoff, Demetrio; Convex Potentials and Optimal Shift Generated Oblique Duals in Shift Invariant Spaces; Birkhauser Boston Inc; Journal Of Fourier Analysis And Applications; 23; 2; 4-2017; 401-441
Compartir
Altmétricas