Mostrar el registro sencillo del ítem
dc.contributor.author
Jurtz, Vanessa Isabell
dc.contributor.author
Johansen, Alexander Rosenberg
dc.contributor.author
Nielsen, Morten
dc.contributor.author
Almagro Armenteros, Jose Juan
dc.contributor.author
Nielsen, Henrik
dc.contributor.author
Sønderby, Casper Kaae
dc.contributor.author
Winther, Ole
dc.contributor.author
Sønderby, Søren Kaae
dc.date.available
2018-12-12T18:47:24Z
dc.date.issued
2017-11
dc.identifier.citation
Jurtz, Vanessa Isabell; Johansen, Alexander Rosenberg; Nielsen, Morten; Almagro Armenteros, Jose Juan; Nielsen, Henrik; et al.; An introduction to deep learning on biological sequence data: Examples and solutions; Oxford University Press; Bioinformatics (Oxford, England); 33; 22; 11-2017; 3685-3690
dc.identifier.issn
1367-4803
dc.identifier.uri
http://hdl.handle.net/11336/66355
dc.description.abstract
Motivation: Deep neural network architectures such as convolutional and long short-term memory networks have become increasingly popular as machine learning tools during the recent years. The availability of greater computational resources, more data, new algorithms for training deep models and easy to use libraries for implementation and training of neural networks are the drivers of this development. The use of deep learning has been especially successful in image recognition; and the development of tools, applications and code examples are in most cases centered within this field rather than within biology. Results: Here, we aim to further the development of deep learning methods within biology by providing application examples and ready to apply and adapt code templates. Given such examples, we illustrate how architectures consisting of convolutional and long short-term memory neural networks can relatively easily be designed and trained to state-of-the-art performance on three biological sequence problems: prediction of subcellular localization, protein secondary structure and the binding of peptides to MHC Class II molecules. Availability and implementation: All implementations and datasets are available online to the scientific community at https://github.com/vanessajurtz/lasagne4bio. Supplementary information: Supplementary data are available at Bioinformatics online.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Oxford University Press
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Machine Learning
dc.subject
Biology
dc.subject
Sequence
dc.subject.classification
Salud Ocupacional
dc.subject.classification
Ciencias de la Salud
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD
dc.title
An introduction to deep learning on biological sequence data: Examples and solutions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-06-13T14:58:01Z
dc.identifier.eissn
1460-2059
dc.journal.volume
33
dc.journal.number
22
dc.journal.pagination
3685-3690
dc.journal.pais
Reino Unido
dc.journal.ciudad
Oxford
dc.description.fil
Fil: Jurtz, Vanessa Isabell. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Johansen, Alexander Rosenberg. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina
dc.description.fil
Fil: Almagro Armenteros, Jose Juan. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Nielsen, Henrik. Technical University of Denmark; Dinamarca
dc.description.fil
Fil: Sønderby, Casper Kaae. Universidad de Copenhagen; Dinamarca
dc.description.fil
Fil: Winther, Ole. Universidad de Copenhagen; Dinamarca
dc.description.fil
Fil: Sønderby, Søren Kaae. Universidad de Copenhagen; Dinamarca
dc.journal.title
Bioinformatics (Oxford, England)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1093/bioinformatics/btx531
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article-abstract/33/22/3685/4092933
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870575/
Archivos asociados