Mostrar el registro sencillo del ítem

dc.contributor.author
Moguillansky, Martin Oscar  
dc.contributor.author
Rotstein, Nicolas Daniel  
dc.contributor.author
Falappa, Marcelo Alejandro  
dc.date.available
2018-12-12T15:56:05Z  
dc.date.issued
2010-03  
dc.identifier.citation
Moguillansky, Martin Oscar; Rotstein, Nicolas Daniel; Falappa, Marcelo Alejandro; Generalized abstract argumentation: A first-order machinery towards ontology debugging; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 14; 46; 3-2010; 17-33  
dc.identifier.issn
1137-3601  
dc.identifier.uri
http://hdl.handle.net/11336/66329  
dc.description.abstract
Same as Dung's abstract argumentation framework (AF), the notion of generalized abstract argumentation framework (GenAF) aims at reasoning about inconsistency disregarding any logic for arguments; thus both the knowledge base (KB) and language to express beliefs remain unspecified. Nonetheless, reifying the abstract configuration of the AF argumentation machineries to specific logics may bring about some inconveniences. A GenAF is assumed to eventually relate first-order logic (FOL) formulae to abstract arguments. The main purpose of the generalization is to provide a theory capable of reasoning (following argumentation technics) about inconsistent knowledge bases (KB) expressed in any FOL fragment. Consequently, the notion of argument is related to a single formula in the KB. This allows to share the same primitive elements from both, the framework (arguments) and, the KB (formulae). A framework with such features would not only allow to manage a wide range of knowledge representation languages, but also to cope straightforwardly with the dynamics of knowledge. Once the formalism is presented, we propose a reification to the description logic ALC with the intention to handle ontology debugging. In this sense, since argumentation frameworks reason over graphs that relate arguments through attack, our methodology is proposed to bridge ontological inconsistency sources to attack relations in argumentation. Finally, an argumentation semantics adapted to GenAF's, is proposed as a consistency restoration tool with the objective of debugging and repairing ontologies. © AEPIA and the authors.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Sociedad Iberoamericana de Inteligencia Artificial  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Argumentation  
dc.subject
Description Logics  
dc.subject
First-Order Logic  
dc.subject
Inconsistency Tolerance  
dc.subject
Ontology Debugging  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Generalized abstract argumentation: A first-order machinery towards ontology debugging  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-09-18T15:02:22Z  
dc.identifier.eissn
1988-3064  
dc.journal.volume
14  
dc.journal.number
46  
dc.journal.pagination
17-33  
dc.journal.pais
España  
dc.journal.ciudad
Valencia  
dc.description.fil
Fil: Moguillansky, Martin Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Rotstein, Nicolas Daniel. Universidad Nacional del Sur; Argentina  
dc.description.fil
Fil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
Inteligencia Artificial  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journaldocs.iberamia.org/articles/626/article%20%281%29.pdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.4114/ia.v14i46.1510