Mostrar el registro sencillo del ítem
dc.contributor.author
Piersanti, M.
dc.contributor.author
Materassi, M.
dc.contributor.author
Cicone, A.
dc.contributor.author
Spogli, L.
dc.contributor.author
Zhou, H.
dc.contributor.author
Ezquer, Rodolfo Gerardo
dc.date.available
2018-12-10T14:23:00Z
dc.date.issued
2017-12
dc.identifier.citation
Piersanti, M.; Materassi, M.; Cicone, A.; Spogli, L.; Zhou, H.; et al.; Adaptive local iterative filtering: A promising technique for the analysis of nonstationary signals; American Geophysical Union; Journal of Geophysical Research; 123; 1; 12-2017; 1031-1046
dc.identifier.issn
0148-0227
dc.identifier.uri
http://hdl.handle.net/11336/66165
dc.description.abstract
Many real-life signals and, in particular, in the space physics domain, exhibit variations acrossdifferent temporal scales. Hence, their statistical momenta may depend on the time scale at which the signal is studied. To identify and quantify such variations, a time-frequency analysis has to be performed on these signals. The dependence of the statistical properties of a signal fluctuation on the space and time scales is the distinctive character of systems with nonlinear couplings among different modes. Hence, assessing how the statistics of signal fluctuations vary with scale will be of help in understanding the corresponding multiscale statistics of such dynamics. This paper presents a new multiscale data analysis technique, the adaptive local iterative filtering (ALIF), which allows to describe the multiscale nature of the geophysical signal studied better than via Fourier transform, and improves scale resolution with respect to discrete wavelet transform. The example of geophysical signal, to which ALIF has been applied, is ionospheric radio power scintillation on L band. ALIF appears to be a promising technique to study the small-scale structures of radio scintillation due to ionospheric turbulence.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Geophysical Union
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
New Data Analisys Tool
dc.subject
Nonstationary And Nonlinearity
dc.subject
Statistical Analysis
dc.subject
Radio Scintillation Signal
dc.subject.classification
Meteorología y Ciencias Atmosféricas
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Adaptive local iterative filtering: A promising technique for the analysis of nonstationary signals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-12-05T14:46:35Z
dc.journal.volume
123
dc.journal.number
1
dc.journal.pagination
1031-1046
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Piersanti, M.. University Of L Aquila, L Aquila, Italy; Italia
dc.description.fil
Fil: Materassi, M.. National Research Council, Rome, Italy; Italia
dc.description.fil
Fil: Cicone, A.. Universitá Degli Studi Dell Aquila, L Aquila, Italy; Italia
dc.description.fil
Fil: Spogli, L.. Istituto Nazionale Di Geofisica E Vulcanologia; Italia
dc.description.fil
Fil: Zhou, H.. Georgia Institute Of Technology, Atlanta, Ga, Usa; Estados Unidos
dc.description.fil
Fil: Ezquer, Rodolfo Gerardo. Universidad Tecnológica Nacional; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física. Laboratorio de Ionosfera; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
dc.journal.title
Journal of Geophysical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1002/2017JA024153
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JA024153
Archivos asociados