Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Harmonic response of a class of finite extensibility nonlinear oscillators

Febbo, MarianoIcon
Fecha de publicación: 06/2011
Editorial: IOP Publishing
Revista: Physica Scripta
ISSN: 0031-8949
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Finite extensibility oscillators are widely used to simulate those systems which can not be extended to infinity. For example, they are used when modelling the bonds between molecules in a polymer or DNA molecule or when simulating filaments of non-Newtonian liquids. In this work, the dynamic behavior of a harmonically driven finite extensibility oscillator is presented and studied. To this end, the harmonic balance method is applied to determine the amplitude-frequency and the amplitude-phase equations. The distinguishable feature in this case is the bending of the amplitude-frequency curve to the frequency axis, making it to approach asymptotically to the limit of maximum elongation of the oscillator, which physically represents the impossibility for the system<br />to reach this limit. Also, the stability condition which defines stable and unstable steady-states solutions is derived. The study of the effect of the system parameters in the response reveals that a decreasing value of damping coefficient or an increasing value of excitation amplitude leads to the appearance of a multi-valued response and to the existence of a jump phenomenon. In this sense, the critical amplitude of the excitation, which refers to here as a certain value of external excitation that results in the occurrence of jump phenomena, is also derived. Numerical experiments to observe the effects of the system parameters on the frequency-amplitude response are performed to compare them to analytical calculations. For a low value of damping coefficient or a high value of excitation amplitude the agreement is poor for low frequencies but good for high frequencies.<br />It is demonstrated that the disagreement is caused by neglecting the higher-order harmonics in the analytical formulation. These higher-order harmonics, which appear as distinguishable peaks at certain values in the frequency response curves, are possible to calculate considering not the linearized frequency of the oscillator but its actual frequency which is strongly amplitude-dependent. On the other side, for a high value of damping coefficient or a low value of excitation amplitude, the agreement between numerical and analytical calculations is excellent. For these cases, the system is prevented to explore large amplitudes of vibration and, therefore, the<br />nonlinearity is not too much manifested.
Palabras clave: Harmonic Response , Finite Extensibility , Nonlinear Oscillator
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.007Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/66138
DOI: http://dx.doi.org/10.1088/0031-8949/83/06/065009
URL: http://iopscience.iop.org/article/10.1088/0031-8949/83/06/065009/meta
Colecciones
Articulos(IFISUR)
Articulos de INSTITUTO DE FISICA DEL SUR
Citación
Febbo, Mariano; Harmonic response of a class of finite extensibility nonlinear oscillators; IOP Publishing; Physica Scripta; 83; 6; 6-2011; 65009-65021
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES