Artículo
On the classification problem for Poisson point processes
Fecha de publicación:
01/2017
Editorial:
Elsevier Inc
Revista:
Journal Of Multivariate Analysis
ISSN:
0047-259X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For Poisson processes taking values in a general metric space, we tackle the problem of supervised classification in two different ways: via the classical k-nearest neighbor rule, by introducing suitable distances between patterns of points; and via the Bayes rule, by nonparametrically estimating the intensity function of the process. In the first approach we prove that under the separability of the space, the rule turns out to be consistent. In the second case, we prove the consistency of the rule by proving the consistency of the estimated intensities. Both classifiers are shown to behave well under departures from the Poisson distribution.
Palabras clave:
Classification
,
Nonparametric Estimation
,
Point Process
,
Poisson Process
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Cholaquidis, Alejandro; Forzani, Liliana Maria; Llop Orzan, Pamela Nerina; Moreno, Leonardo; On the classification problem for Poisson point processes; Elsevier Inc; Journal Of Multivariate Analysis; 153; 1-2017; 1-15
Compartir
Altmétricas