Mostrar el registro sencillo del ítem

dc.contributor.author
Leung, Andy  
dc.contributor.author
Yohai, Victor Jaime  
dc.contributor.author
Zamar, Ruben Horacio  
dc.date.available
2018-12-06T18:26:58Z  
dc.date.issued
2017-07  
dc.identifier.citation
Leung, Andy; Yohai, Victor Jaime; Zamar, Ruben Horacio; Multivariate location and scatter matrix estimation under cellwise and casewise contamination; Elsevier Science; Computational Statistics and Data Analysis; 111; 7-2017; 59-76  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/66009  
dc.description.abstract
Real data may contain both cellwise outliers and casewise outliers. There is a vast literature on robust estimation for casewise outliers, but only a scant literature for cellwise outliers and almost none for both types of outliers. Estimation of multivariate location and scatter matrix is a corner stone in multivariate data analysis. A two-step approach was recently proposed to perform robust estimation of multivariate location and scatter matrix in the presence of cellwise and casewise outliers. In the first step a univariate filter was applied to remove cellwise outliers. In the second step a generalized S-estimator was used to downweight casewise outliers. This proposal can be further improved in three main directions. First, through the introduction of a consistent bivariate filter to be used in combination with the univariate filter in the first step. Second, through the proposal of a new fast subsampling procedure to generate starting points for the generalized S-estimator in the second step. Third, through the use of a non-monotonic weight function for the generalized S-estimator to better handle casewise outliers in high dimension. A simulation study and a real data example show that, unlike the original two-step procedure, the modified two-step approach performs and scales well in high dimension. Moreover, they show that the modified procedure outperforms the original one and other state-of-the-art robust procedures under cellwise and casewise data contamination.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cellwise Outliers  
dc.subject
Componentwise Contamination  
dc.subject
Multivariate Location And Scatter  
dc.subject
Robust Estimation  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Multivariate location and scatter matrix estimation under cellwise and casewise contamination  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-11-02T17:31:49Z  
dc.journal.volume
111  
dc.journal.pagination
59-76  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Leung, Andy. University of British Columbia; Canadá  
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Zamar, Ruben Horacio. University of British Columbia; Canadá  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2017.02.007  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947317300270