Mostrar el registro sencillo del ítem

dc.contributor.author
Smucler, Ezequiel  
dc.contributor.author
Yohai, Victor Jaime  
dc.date.available
2018-12-06T18:25:31Z  
dc.date.issued
2017-07  
dc.identifier.citation
Smucler, Ezequiel; Yohai, Victor Jaime; Robust and sparse estimators for linear regression models; Elsevier Science; Computational Statistics and Data Analysis; 111; 7-2017; 116-130  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/66002  
dc.description.abstract
Penalized regression estimators are popular tools for the analysis of sparse and high-dimensional models. However, penalized regression estimators defined using an unbounded loss function can be very sensitive to the presence of outlying observations, especially to high leverage outliers. The robust and asymptotic properties of ℓ1-penalized MM-estimators and MM-estimators with an adaptive ℓ1 penalty are studied. For the case of a fixed number of covariates, the asymptotic distribution of the estimators is derived and it is proven that for the case of an adaptive ℓ1 penalty, the resulting estimator can have the oracle property. The advantages of the proposed estimators are demonstrated through an extensive simulation study and the analysis of real data sets. The proofs of the theoretical results are available in the Supplementary material to this article (see Appendix A).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Lasso  
dc.subject
Mm-Estimators  
dc.subject
Oracle Property  
dc.subject
Robust Regression  
dc.subject
Sparse Linear Models  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust and sparse estimators for linear regression models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-25T13:34:04Z  
dc.journal.volume
111  
dc.journal.pagination
116-130  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2017.02.002  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947317300221