Mostrar el registro sencillo del ítem
dc.contributor.author
Smucler, Ezequiel
dc.contributor.author
Yohai, Victor Jaime
dc.date.available
2018-12-06T18:25:31Z
dc.date.issued
2017-07
dc.identifier.citation
Smucler, Ezequiel; Yohai, Victor Jaime; Robust and sparse estimators for linear regression models; Elsevier Science; Computational Statistics and Data Analysis; 111; 7-2017; 116-130
dc.identifier.issn
0167-9473
dc.identifier.uri
http://hdl.handle.net/11336/66002
dc.description.abstract
Penalized regression estimators are popular tools for the analysis of sparse and high-dimensional models. However, penalized regression estimators defined using an unbounded loss function can be very sensitive to the presence of outlying observations, especially to high leverage outliers. The robust and asymptotic properties of ℓ1-penalized MM-estimators and MM-estimators with an adaptive ℓ1 penalty are studied. For the case of a fixed number of covariates, the asymptotic distribution of the estimators is derived and it is proven that for the case of an adaptive ℓ1 penalty, the resulting estimator can have the oracle property. The advantages of the proposed estimators are demonstrated through an extensive simulation study and the analysis of real data sets. The proofs of the theoretical results are available in the Supplementary material to this article (see Appendix A).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Lasso
dc.subject
Mm-Estimators
dc.subject
Oracle Property
dc.subject
Robust Regression
dc.subject
Sparse Linear Models
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust and sparse estimators for linear regression models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-25T13:34:04Z
dc.journal.volume
111
dc.journal.pagination
116-130
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Smucler, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
dc.description.fil
Fil: Yohai, Victor Jaime. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
dc.journal.title
Computational Statistics and Data Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.csda.2017.02.002
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0167947317300221
Archivos asociados