Mostrar el registro sencillo del ítem
dc.contributor.author
Rositano, Florencia
dc.contributor.author
Piñeiro, Gervasio
dc.contributor.author
Bert, Federico Esteban
dc.contributor.author
Ferraro, Diego Omar
dc.date.available
2018-12-06T18:24:18Z
dc.date.issued
2017-09
dc.identifier.citation
Rositano, Florencia; Piñeiro, Gervasio; Bert, Federico Esteban; Ferraro, Diego Omar; A comparison of two sensitivity analysis techniques based on four bayesian models representing ecosystem services provision in the Argentine Pampas; Elsevier Science; Ecological Informatics; 41; 9-2017; 33-39
dc.identifier.issn
1574-9541
dc.identifier.uri
http://hdl.handle.net/11336/65995
dc.description.abstract
Sensitivity analyses (SAs) identify how an output variable of a model is modified by changes in the input variables. These analyses are a good way for assessing the performance of probabilistic models, like Bayesian Networks (BN). However, there are several commonly used SAs in BN literature, and formal comparisons about their outcomes are scarce. We used four previously developed BNs which represent ecosystem services provision in Pampean agroecosystems (Argentina) in order to test two local sensitivity approaches widely used. These SAs were: 1) One-at-a-time, used in BNs but more commonly in linear modelling; and 2) Sensitivity to findings, specific to BN modelling. Results showed that both analyses provided an adequate overview of BN behaviour. Furthermore, analyses produced a similar influence ranking of input variables over each output variable. Even though their interchangeably application could be an alternative in our bayesian models, we believe that OAT is the suitable one to implement here because of its capacity to demonstrate the relation (positive or negative) between input and output variables. In summary, we provided insights about two sensitivity techniques in BNs based on a case study which may be useful for ecological modellers.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bayesian Networks
dc.subject
One-At-A-Time
dc.subject
Probabilistic Models
dc.subject
Sensitivity Analyses
dc.subject
Sensitivity to Findings
dc.subject.classification
Agricultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
A comparison of two sensitivity analysis techniques based on four bayesian models representing ecosystem services provision in the Argentine Pampas
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-23T19:54:53Z
dc.journal.volume
41
dc.journal.pagination
33-39
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Rositano, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
dc.description.fil
Fil: Piñeiro, Gervasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Recursos Naturales y Ambiente; Argentina
dc.description.fil
Fil: Bert, Federico Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
dc.description.fil
Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal; Argentina
dc.journal.title
Ecological Informatics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S1574954116301911
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.ecoinf.2017.07.005
Archivos asociados