Artículo
Phase-space representations of symmetric informationally complete positive-operator-valued-measure fiducial states
Fecha de publicación:
03/2017
Editorial:
American Physical Society
Revista:
Physical Review A
ISSN:
2469-9934
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The problem of finding symmetric informationally complete positive-operator-valued-measures (SIC-POVMs) has been solved numerically for all dimensions d up to 67 [A. J. Scott and M. Grassl, J. Math. Phys. 51, 042203 (2010)JMAPAQ0022-248810.1063/1.3374022], but a general proof of existence is still lacking. For each dimension, it was shown that it is possible to find a SIC-POVM that is generated from a fiducial state upon application of the operators of the Heisenberg-Weyl group. We draw on the numerically determined fiducial states to study their phase-space features, as displayed by the characteristic function and the Wigner, Bargmann, and Husimi representations, adapted to a Hilbert space of finite dimension. We analyze the phase-space localization of fiducial states, and observe that the SIC-POVM condition is equivalent to a maximal delocalization property. Finally, we explore the consequences in phase space of the conjectured Zauner symmetry. In particular, we construct a Hermitian operator commuting with this symmetry that leads to a representation of fiducial states in terms of eigenfunctions with definite semiclassical features.
Palabras clave:
Quantum Information
,
Quantum Chaos
,
Sic-Povm
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFEG)
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos de INST.DE FISICA ENRIQUE GAVIOLA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Saraceno, Marcos; Ermann, Leonardo; Cormick, Maria Cecilia; Phase-space representations of symmetric informationally complete positive-operator-valued-measure fiducial states; American Physical Society; Physical Review A; 95; 3; 3-2017; 32102-32113
Compartir
Altmétricas