Mostrar el registro sencillo del ítem
dc.contributor.author
Zabaloy, Marcelo Santiago
dc.date.available
2018-12-05T12:42:35Z
dc.date.issued
2008-08
dc.identifier.citation
Zabaloy, Marcelo Santiago; Cubic mixing rules; American Chemical Society; Industrial & Engineering Chemical Research; 47; 15; 8-2008; 5063-5079
dc.identifier.issn
0888-5885
dc.identifier.uri
http://hdl.handle.net/11336/65826
dc.description.abstract
The accurate description of thermodynamic properties of asymmetric multicomponent fluid systems of industrial interest, over a wide range of conditions, requires the availability of models that are both consistent and mathematically flexible. Specially suited models are those of the equation-of-state (EOS) type, which are built to represent the properties of liquids, vapors, and supercritical fluids. The composition dependence of EOSs is typically pairwise additive, with binary interaction parameters conventionally fit to match experimental information on binary systems. This is the case for the well-known van der Waals quadratic mixing rules (QMRs), which assume multicomponent system describability from binary parameters. In contrast, cubic mixing rules (CMRs) depend on binary and ternary interaction parameters. Thus, CMRs offer the possibility of increasing the model flexibility, i.e., CMRs are ternionwise additive. This means that, through ternary parameters, CMRs make it possible to influence the model behavior for ternary systems while leaving invariant the description of the corresponding binary subsystems. However, the increased flexibility implies the need for experimental information on ternary systems. This is so, unless we have a method to predict values for ternary parameters from values of binary parameters for the ternary subsystems not having ternary experimental information available, when we want to model the behavior of multicomponent fluids. Mathias, Klotz, and Prausnitz (MKP) [Fluid Phase Equilib. 1991, 67, 31-44] put forward this problem. In this work, we provide a possible solution, i.e., an equation to predict three index ternary parameters from three index binary parameters within the context of CMRs. Our equation matches the Michelsen-Kistenmacher invariance constraint and, in a way, has the pair-based MKP mixing rule in its genesis. The present approach can be extended also to models that are not of the EOS type. © 2008 American Chemical Society.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Mixing Rules
dc.subject.classification
Otras Ingeniería Química
dc.subject.classification
Ingeniería Química
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Cubic mixing rules
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-10-12T14:46:46Z
dc.journal.volume
47
dc.journal.number
15
dc.journal.pagination
5063-5079
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Washington
dc.description.fil
Fil: Zabaloy, Marcelo Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
dc.journal.title
Industrial & Engineering Chemical Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie071570b
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1021/ie071570b
Archivos asociados