Mostrar el registro sencillo del ítem

dc.contributor.author
Bertolino, Graciela Mabel  
dc.contributor.author
Ruda, M.  
dc.contributor.author
Pasianot, Roberto Cesar  
dc.contributor.author
Farkas, D.  
dc.date.available
2018-12-03T13:26:57Z  
dc.date.issued
2017-04-28  
dc.identifier.citation
Bertolino, Graciela Mabel; Ruda, M.; Pasianot, Roberto Cesar; Farkas, D.; Atomistic simulation of the tension/compression response of textured nanocrystalline HCP Zr; Elsevier Science; Computational Materials Science; 130; 28-4-2017; 172-182  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/65563  
dc.description.abstract
Molecular dynamics virtual tension/compression tests were performed to study the deformation mechanisms in nanocrystalline (15–38 nm grain size) 50 grains HCP Zr columnar samples with random [1 −1 0 0] prismatic and [0 0 0 1] basal textures. Two different embedded atom potentials were used to model atomic interactions and to describe the relationship between generalized stacking fault energies and mechanical predictions. Both potentials predict higher flow stresses in compression for both textures. Nanocrystalline Zr [0 0 0 1] basal textured samples deform mainly by dislocations emission and glide along 〈1 1 −2 0〉 {1 −1 0 0} and by grain boundary sliding and migration; both potentials show the same deformation mechanisms for this texture. Prism [1 −1 0 0] textured samples deform mainly by twinning. Both in tensile and compression tests {1 1 −2 1} twins nucleate mainly at grain boundaries and sites with high stress concentration. These twins grow by a shuffle mechanism. Emission and sliding of partial dislocations, grain boundary gliding and migration were also observed for this texture with the main dislocations being of the 1/3 〈1 −2 1 0〉 type. These basic deformation mechanisms were the same for both potentials tested. The observed quantitative differences between the predictions of both potentials are discussed in terms of some of their basic properties.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Deformation Mechanisms  
dc.subject
Molecular Dynamics  
dc.subject
Nanocrystalline Zirconium  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Atomistic simulation of the tension/compression response of textured nanocrystalline HCP Zr  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-29T15:10:33Z  
dc.journal.volume
130  
dc.journal.pagination
172-182  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Bertolino, Graciela Mabel. Comision Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Bariloche). División Física de Metales; Argentina  
dc.description.fil
Fil: Ruda, M.. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Pasianot, Roberto Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina. Comisión Nacional de Energía Atómica; Argentina  
dc.description.fil
Fil: Farkas, D.. Virginia Tech; Estados Unidos  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://dx.doi.org/10.1016/j.commatsci.2016.12.038  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927025616306656