Artículo
Weighted least squares solutions of the equation AXB - C = 0
Fecha de publicación:
04/2017
Editorial:
Elsevier Science Inc
Revista:
Linear Algebra and its Applications
ISSN:
0024-3795
e-ISSN:
1873-1856
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be a Hilbert space, L(H) the algebra of bounded linear operators on H and W ∈ L(H) a positive operator such that W^1/2 is in the p-Schatten class, for some 1 ≤ p < ∞. Given A,B ∈ L(H) with closed range and C ∈ L(H), we study the following weighted approximation problem: analyze the existence ofmin{ ||AXB − C||p,W , X ∈L(H)}, (0.1)where ||X ||p,W = ||W^1/2 X ||p . We also study the related operator approximation problem: analyze the existence ofmin {(AXB − C)*W (AXB − C), X ∈L(H)}, (0.2)where the order is the one induced in L(H) by the cone of positive operators. In this paper we prove that the existence of the minimum of (0.2) is equivalent to the existence of a solution of the normal equation A*W (AXB − C) = 0. We also give sufficient conditions for the existence of the minimum.
Palabras clave:
Oblique Projections
,
Operator Approximation
,
Schatten P Classes
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Contino, Maximiliano; Giribet, Juan Ignacio; Maestripieri, Alejandra Laura; Weighted least squares solutions of the equation AXB - C = 0; Elsevier Science Inc; Linear Algebra and its Applications; 518; 4-2017; 177-197
Compartir
Altmétricas