Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Exploring the use of online video games to detect personality dichotomies

Feldman, JuanIcon ; Monteserin, Ariel JoséIcon ; Amandi, Analia AdrianaIcon
Fecha de publicación: 02/2017
Editorial: Emerald
Revista: Online Information Review
ISSN: 1468-4527
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Purpose - Personality trait detection is a problem that has been gaining much attention in the computer science field recently. By leveraging users' personality knowledge software applications are able to adapt their behaviour accordingly. To detect personality traits automatically users must substantially interact with software applications to gather enough information that describe their behaviour. For addressing this limitation, the authors explore the use of online video games as an alternative approach to detect personality dichotomies. The paper aims to discuss these issues. Design/methodology/approach - The authors analyse the use of several online video games that exhibit features related with Myers-Briggs sensitive-intuitive personality dichotomy. Then, the authors build a user profile that describes users' behaviour when interacting with online video games. Finally, the authors identify users' personality by analysing their profile with different classification algorithms. Findings - The results show that games that obtained better results in the personality dichotomy detection exhibit features that had better match with the sensitive-intuitive dichotomy preferences. Moreover, the results show that the classification algorithms should satisfactorily deal with unbalanced data sets, since it is natural that the frequencies of the dichotomies types are unbalanced. In addition, in the context of personality trait detection, online video games possess several advantages over other type of software applications. By using games, users do not need to have previous experience, since they learn how to play during gameplay. Furthermore, the information and time needed to predict the sensitive-intuitive dichotomy using games is little. Originality/value - This study shows that online video games are a promising environment in which the users' personality dichotomies can be detected.
Palabras clave: Classification , Myers-Briggs Type Indicator , Online Video Games , User Profiles
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 289.1Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/65006
DOI: https://doi.org/10.1108/OIR-11-2015-0361
URL: https://www.emeraldinsight.com/doi/abs/10.1108/OIR-11-2015-0361
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Feldman, Juan; Monteserin, Ariel José; Amandi, Analia Adriana; Exploring the use of online video games to detect personality dichotomies; Emerald; Online Information Review; 41; 5; 2-2017; 598-610
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES