Artículo
Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation
Fecha de publicación:
03/2008
Editorial:
American Physical Society
Revista:
Physical Review E: Statistical, Nonlinear and Soft Matter Physics
ISSN:
1539-3755
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We investigate the memory effects present in the asymptotic dynamics of a classical harmonic oscillator governed by a generalized Langevin equation. Using Laplace analysis together with Tauberian theorems we derive asymptotic expressions for the mean values, variances, and velocity autocorrelation function in terms of the long-time behavior of the memory kernel and the correlation function of the random force. The internal and external noise cases are analyzed. A simple criterion to determine if the diffusion process is normal or anomalous is established. © 2008 The American Physical Society.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Desposito, Marcelo Arnaldo; Viñales, Angel Daniel; Memory effects in the asymptotic diffusive behavior of a classical oscillator described by a generalized Langevin equation; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 77; 3; 3-2008; 1-6
Compartir
Altmétricas