Mostrar el registro sencillo del ítem

dc.contributor.author
Garate, Hernán  
dc.contributor.author
Bianchi, Micaela  
dc.contributor.author
Pietrasanta, Lia  
dc.contributor.author
Goyanes, Silvia Nair  
dc.contributor.author
D`accorso, Norma Beatriz  
dc.date.available
2018-11-16T16:16:06Z  
dc.date.issued
2017-01  
dc.identifier.citation
Garate, Hernán; Bianchi, Micaela; Pietrasanta, Lia; Goyanes, Silvia Nair; D`accorso, Norma Beatriz; High-Energy Dissipation Performance in Epoxy Coatings by the Synergistic Effec of Carbon Nanotube/Block Copolymer Conjugate; American Chemical Society; ACS Applied Materials & Interfaces; 9; 1; 1-2017; 930-943  
dc.identifier.issn
1944-8244  
dc.identifier.uri
http://hdl.handle.net/11336/64601  
dc.description.abstract
Hierarchical assembly of hard/soft nanoparticles holds great potential as reinforcements for polymer nanocomposites with tailored properties. Here, we present a facile strategy to integrate polystyrene-grafted carbon nanotubes (PSgCNT) (0.05-0.3 wt %) and poly(styrene-b- [isoprene-ran-epoxyisoprene]-b-styrene) block copolymer (10 wt %) into epoxy coatings using an ultrasound-assisted noncovalent functionalization process. The method leads to cured nanocomposites with core-shell block copolymer (BCP) nanodomains which are associated with carbon nanotubes (CNT) giving rise to CNT-BCP hybrid structures. Nanocomposite energy dissipation and reduced Young's Modulus (E∗) is determined from force-distance curves by atomic force microscopy operating in the PeakForce QNM imaging mode and compared to thermosets modified with BCP and purified carbon nanotubes (pCNT). Remarkably, nanocomposites bearing PSgCNT-BCP conjugates display an increase in energy dissipation of up to 7.1-fold with respect to neat epoxy and 53% more than materials prepared with pCNT and BCP at the same CNT load (0.3 wt %), while reduced Young's Modulus shows no significant change with CNT type and increases up to 25% compared to neat epoxy E∗ at a CNT load of 0.3 wt %. The energy dissipation performance of nanocomposites is also reflected by the lower wear coefficients of materials with PSgCNT and BCP compared to those with pCNT and BCP, as determined by abrasion tests. Furthermore, scanning electron microscopy (SEM) images taken on wear surfaces show that materials incorporating PSgCNT and BCP exhibit much more surface deformation under shear forces in agreement with their higher ability to dissipate more energy before particle release. We propose that the synergistic effect observed in energy dissipation arises from hierarchical assembly of PSgCNT and BCP within the epoxy matrix and provides clues that the CNT-BCP interface has a significant role in the mechanisms of energy dissipation of epoxy coating modified by CNT-BCP conjugates. These findings provide a means to design epoxy-based coatings with high-energy dissipation performance.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Block Copolymer (Bcp)  
dc.subject
Carbon Nanotubes (Cnt)  
dc.subject
Energy Dissipation  
dc.subject
Epoxy Coatings  
dc.subject
Nanocomposites  
dc.subject
Wear Resistance  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
High-Energy Dissipation Performance in Epoxy Coatings by the Synergistic Effec of Carbon Nanotube/Block Copolymer Conjugate  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-23T18:12:35Z  
dc.journal.volume
9  
dc.journal.number
1  
dc.journal.pagination
930-943  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Washington  
dc.description.fil
Fil: Garate, Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentina  
dc.description.fil
Fil: Bianchi, Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Pietrasanta, Lia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: Goyanes, Silvia Nair. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina  
dc.description.fil
Fil: D`accorso, Norma Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; Argentina  
dc.journal.title
ACS Applied Materials & Interfaces  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/acsami.6b13212  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acsami.6b13212