Mostrar el registro sencillo del ítem

dc.contributor.author
Péron, Guillaume  
dc.contributor.author
Fleming, Christen H.  
dc.contributor.author
Duriez, Olivier  
dc.contributor.author
Fluhr, Julie  
dc.contributor.author
Itty, Christian  
dc.contributor.author
Lambertucci, Sergio Agustin  
dc.contributor.author
Safi, Kamran  
dc.contributor.author
Shepard, Emily L. C.  
dc.contributor.author
Calabrese, Justin  
dc.date.available
2018-11-13T18:23:16Z  
dc.date.issued
2017-12-27  
dc.identifier.citation
Péron, Guillaume; Fleming, Christen H.; Duriez, Olivier; Fluhr, Julie; Itty, Christian; et al.; The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor; Wiley Blackwell Publishing, Inc; Journal of Applied Ecology; 54; 6; 27-12-2017; 1895-1906  
dc.identifier.issn
0021-8901  
dc.identifier.uri
http://hdl.handle.net/11336/64359  
dc.description.abstract
Collisions of large soaring raptors with wind turbines and other infrastructures represent a growing conservation concern. We describe a way to leverage knowledge about raptor soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. Soaring raptors are theoretically expected to select energy sources (uplift) optimally, making their flight height dependent on uplift conditions. This approach can be used to forecast collision hazard when planning or operating wind farms. Empirical investigations of the factors influencing flight height have, however, so far been hindered by observation error. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS tracking data to filter heavy-tailed observation error and estimate the relationship between vertical movement parameters and weather variables describing the energy landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic model of flight height above ground based on aerodynamics and resource selection theories. The approach was replicated for five GPS-tracked Andean condors Vultur gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos. In all individuals, movement parameters correlated with thermal uplift potential in the expected direction. In all species, collision hazard was lowest for high thermal uplift potential values. Species specificities in the presence of a peak in collision hazard for medium values of thermal uplift potential could be explained by differences in wing loading and aspect ratio. Synthesis and applications. Our fitted models convert weather data (thermal uplift potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), making it possible to prioritize different wind development projects with respect to the relative hazard they would pose to raptors. However, our model should be combined with post-construction monitoring to document, and eventually account for turbine avoidance behaviours in collision rate predictions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
3d  
dc.subject
Continuous-Time  
dc.subject
Flight Height  
dc.subject
Human&Ndash;Wildlife Conflict  
dc.subject
Movement Ecology  
dc.subject
Raptor  
dc.subject
State-Space Models  
dc.subject
Wind Power  
dc.subject
Wind Turbines  
dc.subject
Z-Axis Gps Tracking Data  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-23T16:17:07Z  
dc.journal.volume
54  
dc.journal.number
6  
dc.journal.pagination
1895-1906  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.conicet.avisoEditorial
This is the peer reviewed version of the following article: Péron, G. , Fleming, C. H., Duriez, O. , Fluhr, J. , Itty, C. , Lambertucci, S. , Safi, K. , Shepard, E. L. and Calabrese, J. M. (2017), The energy landscape predicts flight height and wind turbine collision hazard in three species of large soaring raptor. J Appl Ecol, 54: 1895-1906. doi:10.1111/1365-2664.12909, which has been published in final form at https://doi.org/10.1111/1365-2664.12909. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.  
dc.description.fil
Fil: Péron, Guillaume. Smithsonian Conservation Biology Institute; Estados Unidos  
dc.description.fil
Fil: Fleming, Christen H.. Smithsonian Conservation Biology Institute; Estados Unidos  
dc.description.fil
Fil: Duriez, Olivier. National Research Institute Of Science And Technology-centre de Montpellier; Francia  
dc.description.fil
Fil: Fluhr, Julie. National Research Institute Of Science And Technology-centre de Montpellier; Francia  
dc.description.fil
Fil: Itty, Christian. Université Montpellier II; Francia  
dc.description.fil
Fil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina  
dc.description.fil
Fil: Safi, Kamran. Institut Max Planck for Evolutionary Anthropology; Alemania  
dc.description.fil
Fil: Shepard, Emily L. C.. Swansea University; Reino Unido  
dc.description.fil
Fil: Calabrese, Justin. University of Maryland; Estados Unidos  
dc.journal.title
Journal of Applied Ecology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12909/epdf  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/1365-2664.12909