Artículo
An improved aerosol optical depth map based on machine-learning and modis data: Development and application in South America
Lanzaco, Bethania Luz
; Olcese, Luis Eduardo
; Palancar, Gustavo Gerardo
; Toselli, Beatriz Margarita
Fecha de publicación:
06/2017
Editorial:
Taiwan Assoc Aerosol Res-taar
Revista:
Aerosol And Air Quality Research
ISSN:
1680-8584
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In zones where aerosol properties have been poorly characterized, satellite-based (MODIS) and ground-based (AERONET) aerosol optical depth (AOD) values typically differ. In this work, we use machine-learning based methods (artificial neural networks and support vector machines) to obtain corrected AOD values taken from MODIS in regions that are positioned far from AERONET stations. The method has been validated using several approaches. The area suitable for improvement covers 62% of the South American continent, and the degree of improvement compared to MODIS values, expressed in terms of the fraction of data within the MODIS error, was found to be 38% and 86% for the Terra and Aqua satellites, respectively. The results show absolute monthly average differences between the MODIS and the proposed method of up to ± 0.6 AOD units. The MODIS AOD distribution for the analyzed period shows a mode of –0.04, while that for the method presented here is 0.08.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFIQC)
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Articulos de INST.DE INVESTIGACIONES EN FISICO- QUIMICA DE CORDOBA
Citación
Lanzaco, Bethania Luz; Olcese, Luis Eduardo; Palancar, Gustavo Gerardo; Toselli, Beatriz Margarita; An improved aerosol optical depth map based on machine-learning and modis data: Development and application in South America; Taiwan Assoc Aerosol Res-taar; Aerosol And Air Quality Research; 17; 6; 6-2017; 1523-1536
Compartir
Altmétricas