Mostrar el registro sencillo del ítem

dc.contributor.author
Orosco, Eugenio Conrado  
dc.contributor.author
Di Sciascio, Fernando Agustín  
dc.date.available
2018-11-02T19:54:36Z  
dc.date.issued
2017-10  
dc.identifier.citation
Orosco, Eugenio Conrado; Di Sciascio, Fernando Agustín; Muscular synergy classification and myoelectric control using high-order cross-cumulants; Springer; Neural Computing And Applications; 28; 10; 10-2017; 2979-2993  
dc.identifier.issn
0941-0643  
dc.identifier.uri
http://hdl.handle.net/11336/63543  
dc.description.abstract
High-order statistics (HOS) are well suited for describing non-Gaussian random processes. These techniques are increasingly being employed in myoelectric research, on both time and frequency domain techniques. This work presents HOS-based techniques using only HOS time domain features to classify myoelectric signals. The auto-, cross- and full- (joint) third-order cumulants are evaluated as EMG-signal feature vectors to be compared between them. Four surface EMG signals were processed for classify motions from the upper limbs. Synergy among channels is characterized by the features in both auto and cross modes, and their incidences for classifying five or six movements are analyzed. In contrast to the third-order auto-cumulants, it had been verified that the third-order cross-cumulants have the same classification rate by working with five or six movements. A myoelectric control scheme and its experimental application were executed with normal and disabled subjects, reaching a classification rates of 90%, in average. Accuracy in online experiments was similar to the off-line classification rate.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cross-Cumulants  
dc.subject
Hos  
dc.subject
Muscular Synergy  
dc.subject
Myoelectric Control  
dc.subject
Semg  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Muscular synergy classification and myoelectric control using high-order cross-cumulants  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-22T17:25:03Z  
dc.identifier.eissn
1433-3058  
dc.journal.volume
28  
dc.journal.number
10  
dc.journal.pagination
2979-2993  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Orosco, Eugenio Conrado. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.description.fil
Fil: Di Sciascio, Fernando Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina  
dc.journal.title
Neural Computing And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00521-017-2927-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00521-017-2927-6