Mostrar el registro sencillo del ítem

dc.contributor.author
Baravalle, Román  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.contributor.author
Montani, Fernando Fabián  
dc.date.available
2018-11-02T18:30:59Z  
dc.date.issued
2017-11  
dc.identifier.citation
Baravalle, Román; Rosso, Osvaldo Aníbal; Montani, Fernando Fabián; A path integral approach to the Hodgkin–Huxley model; Elsevier Science; Physica A: Statistical Mechanics and its Applications; 486; 11-2017; 986-999  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/63523  
dc.description.abstract
To understand how single neurons process sensory information, it is necessary to develop suitable stochastic models to describe the response variability of the recorded spike trains. Spikes in a given neuron are produced by the synergistic action of sodium and potassium of the voltage-dependent channels that open or close the gates. Hodgkin and Huxley (HH) equations describe the ionic mechanisms underlying the initiation and propagation of action potentials, through a set of nonlinear ordinary differential equations that approximate the electrical characteristics of the excitable cell. Path integral provides an adequate approach to compute quantities such as transition probabilities, and any stochastic system can be expressed in terms of this methodology. We use the technique of path integrals to determine the analytical solution driven by a non-Gaussian colored noise when considering the HH equations as a stochastic system. The different neuronal dynamics are investigated by estimating the path integral solutions driven by a non-Gaussian colored noise q. More specifically we take into account the correlational structures of the complex neuronal signals not just by estimating the transition probability associated to the Gaussian approach of the stochastic HH equations, but instead considering much more subtle processes accounting for the non-Gaussian noise that could be induced by the surrounding neural network and by feedforward correlations. This allows us to investigate the underlying dynamics of the neural system when different scenarios of noise correlations are considered.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Neural Coding  
dc.subject
Neuronal Model  
dc.subject
Path Integrals  
dc.subject
Spiking Output  
dc.subject
Stochastic Processes  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A path integral approach to the Hodgkin–Huxley model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-22T21:51:46Z  
dc.journal.volume
486  
dc.journal.pagination
986-999  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Baravalle, Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Los Andes; Chile  
dc.description.fil
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Physica A: Statistical Mechanics and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S037843711730657X  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2017.06.016