Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Anisotropic BV–L2 regularization of linear inverse ill-posed problems

Mazzieri, Gisela LucianaIcon ; Temperini, Karina GuadalupeIcon ; Spies, Ruben DanielIcon
Fecha de publicación: 06/2017
Editorial: Academic Press Inc Elsevier Science
Revista: Journal of Mathematical Analysis and Applications
ISSN: 0022-247X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

During the last two decades several generalizations of the traditional Tikhonov-Phillips regularization method for solving inverse ill-posed problems have been proposed. Many of these variants consist essentially of modifications on the penalizing term, which force certain features in the obtained regularized solution ([11,18]). If it is known that the regularity of the exact solution is inhomogeneous it is often desirable the use of mixed, spatially adaptive methods ([7,12]). These methods are also highly suitable when the preservation of edges is an important issue, since they allow for the inclusion of anisotropic penalizers for border detection ([20]). In this work we propose the use of a penalizer resulting from the convex spatially-adaptive combination of a classic L2penalizer and an anisotropic bounded variation seminorm. Results on existence and uniqueness of minimizers of the corresponding Tikhonov-Phillips functional are presented. Results on the stability of those minimizers with respect to perturbations in the data, in the regularization parameter and in the operator are also established. Applications to image restoration problems are shown.
Palabras clave: Anisotropy , Bounded Variation , Inverse Problems , Tikhonov&Ndash;Phillips
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.559Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/63501
DOI: http://dx.doi.org/10.1016/j.jmaa.2017.01.005
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Mazzieri, Gisela Luciana; Temperini, Karina Guadalupe; Spies, Ruben Daniel; Anisotropic BV–L2 regularization of linear inverse ill-posed problems; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 450; 1; 6-2017; 427-443
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES