Mostrar el registro sencillo del ítem

dc.contributor.author
Carignano, Mauro  
dc.contributor.author
Costa-Castelló, Ramon  
dc.contributor.author
Roda, Vicente  
dc.contributor.author
Nigro, Norberto Marcelo  
dc.contributor.author
Junco, Sergio Jose  
dc.contributor.author
Feroldi, Diego Hernán  
dc.date.available
2018-11-01T17:58:37Z  
dc.date.issued
2017-08  
dc.identifier.citation
Carignano, Mauro; Costa-Castelló, Ramon; Roda, Vicente; Nigro, Norberto Marcelo; Junco, Sergio Jose; et al.; Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand; Elsevier Science; Journal of Power Sources; 360; 8-2017; 419-433  
dc.identifier.issn
0378-7753  
dc.identifier.uri
http://hdl.handle.net/11336/63459  
dc.description.abstract
Offering high efficiency and producing zero emissions Fuel Cells (FCs) represent an excellent alternative to internal combustion engines for powering vehicles to alleviate the growing pollution in urban environments. Due to inherent limitations of FCs which lead to slow transient response, FC-based vehicles incorporate an energy storage system to cover the fast power variations. This paper considers a FC/supercapacitor platform that configures a hard constrained powertrain providing an adverse scenario for the energy management strategy (EMS) in terms of fuel economy and drivability. Focusing on palliating this problem, this paper presents a novel EMS based on the estimation of short-term future energy demand and aiming at maintaining the state of energy of the supercapacitor between two limits, which are computed online. Such limits are designed to prevent active constraint situations of both FC and supercapacitor, avoiding the use of friction brakes and situations of non-power compliance in a short future horizon. Simulation and experimentation in a case study corresponding to a hybrid electric bus show improvements on hydrogen consumption and power compliance compared to the widely reported Equivalent Consumption Minimization Strategy. Also, the comparison with the optimal strategy via Dynamic Programming shows a room for improvement to the real-time strategies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Fuel Cell-Supercapacitor Hybrid Vehicle  
dc.subject
State Constraint  
dc.subject
Energy Management Strategy  
dc.subject
Fuel Economy  
dc.subject
Drivability  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-23T16:37:17Z  
dc.journal.volume
360  
dc.journal.pagination
419-433  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Carignano, Mauro. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Costa-Castelló, Ramon. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Roda, Vicente. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Junco, Sergio Jose. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Feroldi, Diego Hernán. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Journal of Power Sources  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://linkinghub.elsevier.com/retrieve/pii/S0378775317307887  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpowsour.2017.06.016