Mostrar el registro sencillo del ítem

dc.contributor.author
Rohrmann, Rene Daniel  
dc.date.available
2018-10-26T20:14:45Z  
dc.date.issued
2018-01  
dc.identifier.citation
Rohrmann, Rene Daniel; Rayleigh scattering in dense fluid helium; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 473; 1; 1-2018; 457-469  
dc.identifier.issn
0035-8711  
dc.identifier.uri
http://hdl.handle.net/11336/63141  
dc.description.abstract
Iglesias et al. showed that the Rayleigh scattering from helium atoms decreases by collective effects in the atmospheres of cool white dwarf stars. Their study is here extended to consider an accurate evaluation of the atomic polarizability and the density effects involved in the Rayleigh cross-section over a wide density-temperature region. The dynamic dipole polarizability of helium atoms in the ground state is determinated with the oscillator-strength distribution approach. The spectral density of oscillator strength considered includes most significant single and doubly excited transitions to discrete and continuum energies. Static and dynamic polarizability results are confronted with experiments and other theoretical evaluations shown a very good agreement. In addition, the refractive index of helium is evaluated with the Lorentz- Lorenz equation and shows a satisfactory agreement with the most recent experiments. The effect of spatial correlation of atoms on the Rayleigh scattering is calculated with Monte Carlo simulations and effective energy potentials that represent the particle interactions, covering fluid densities between 0.005 and a few g cm-3 and temperatures between 1 000 and 15 000 K. We provide analytical fits from which the Rayleigh cross-section of fluid helium can be easily calculated at wavelength λ > 505.35 Å. Collision-induced light scattering was estimated to be the dominant scattering process at densities greater than 1-2 g cm-3 depending on the temperature.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Atomic Processes  
dc.subject
Opacity  
dc.subject
Scattering  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Rayleigh scattering in dense fluid helium  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-22T17:27:55Z  
dc.journal.volume
473  
dc.journal.number
1  
dc.journal.pagination
457-469  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Rohrmann, Rene Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; Argentina  
dc.journal.title
Monthly Notices of the Royal Astronomical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/mnras/stx2440  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/473/1/457/4222615  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1709.07076