Mostrar el registro sencillo del ítem

dc.contributor.author
Perez Lopez, I.  
dc.contributor.author
Benoit, H.  
dc.contributor.author
Gauthier, D.  
dc.contributor.author
Sans, J. L.  
dc.contributor.author
Guillot, E.  
dc.contributor.author
Mazza, German Delfor  
dc.contributor.author
Flamant, G.  
dc.date.available
2018-10-22T22:01:08Z  
dc.date.issued
2016-11  
dc.identifier.citation
Perez Lopez, I.; Benoit, H.; Gauthier, D.; Sans, J. L.; Guillot, E.; et al.; On-sun operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid; Pergamon-Elsevier Science Ltd; Solar Energy; 137; 11-2016; 463-476  
dc.identifier.issn
0038-092X  
dc.identifier.uri
http://hdl.handle.net/11336/62910  
dc.description.abstract
Previous studies proved the Dense Particle Suspension (DPS) - also called Upward Bubbling Fluidized Bed (UBFB) - could be used as Heat Transfer Fluid (HTF) in a single-tube solar receiver. This article describes the experiments conducted on a 16-tube, 150 kWth solar receiver using a dense gas-particle suspension (around 30% solid volume fraction) flowing upward as HTF. The receiver was part of a whole pilot setup that allowed the continuous closed-loop circulation of the SiC particles used as HTF. One hundred hours of on-sun tests were performed at the CNRS 1 MW solar furnace in Odeillo. The pilot was tested under various ranges of operating parameters: solid mass flow rate (660–1760 kg/h), input solar power (60–142 kW), and particle temperature before entering the solar receiver (40–180 °C). Steady states were reached during the experiments, with continuous circulation and constant particle temperatures. For the hottest case, the mean particle temperature reached 430 °C in the collector fluidized bed, at the receiver outlet, and it went up to 700 °C at the outlet of the hottest tube, during steady operation. A temperature difference between tubes is observed that is mainly due to the incident solar flux distribution heterogeneity. The thermal efficiency of the receiver, defined as the ratio of power transmitted to the DPS in the form of heat over solar power entering the receiver cavity, was calculated in the range 50–90% for all the experimental cases. The system transient responses to variations of the solar irradiation and of the solid mass flow rate are also reported.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Concentrated Solar Energy  
dc.subject
High Temperature Solid Particle Receiver  
dc.subject
Pilot Scale Experiment  
dc.subject
Thermal Efficiency  
dc.subject.classification
Otras Ingeniería Química  
dc.subject.classification
Ingeniería Química  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
On-sun operation of a 150 kWth pilot solar receiver using dense particle suspension as heat transfer fluid  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-10-22T13:17:33Z  
dc.journal.volume
137  
dc.journal.pagination
463-476  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Perez Lopez, I.. Processes, Materials and Solar Energy Laboratory; Francia. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Benoit, H.. Processes, Materials and Solar Energy Laboratory; Francia. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Gauthier, D.. Processes, Materials and Solar Energy Laboratory; Francia. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Sans, J. L.. Processes, Materials and Solar Energy Laboratory; Francia. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Guillot, E.. Processes, Materials and Solar Energy Laboratory; Francia. Centre National de la Recherche Scientifique; Francia  
dc.description.fil
Fil: Mazza, German Delfor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina  
dc.description.fil
Fil: Flamant, G.. Processes, Materials and Solar Energy Laboratory; Francia. Centre National de la Recherche Scientifique; Francia  
dc.journal.title
Solar Energy  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.solener.2016.08.034  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0038092X16303723