Artículo
Jacobian algebras with periodic module category and exponential growth
Fecha de publicación:
03/2016
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal of Algebra
ISSN:
0021-8693
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recently it was proven by Geiss, Labardini-Fragoso and Schröer in [1] that every Jacobian algebra associated to a triangulation of a closed surface S with a collection of marked points M is tame and Ladkani proved in [2] these algebras are (weakly) symmetric. In this work we show that for these algebras the Auslander-Reiten translation acts 2-periodically on objects. Moreover, we show that excluding only the case of a sphere with 4 (or less) punctures, these algebras are of exponential growth. These results imply that the existing characterization of symmetric tame algebras whose non-projective indecomposable modules are Ω-periodic, has at least a missing class (see [3, Theorem 6.2] or [4]).As a consequence of the 2-periodical actions of the Auslander-Reiten translation on objects, we have that the Auslander-Reiten quiver of the generalized cluster category C(S,M) consists only of stable tubes of rank 1 or 2.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Valdivieso Díaz, Yadira; Jacobian algebras with periodic module category and exponential growth; Academic Press Inc Elsevier Science; Journal of Algebra; 449; 3-2016; 163-174
Compartir
Altmétricas